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Abstract

We call a preference over menus an indirect preference if there exists a preference
over the objects that make up the menus and a menu is ranked over another
if it contains an object that is preferred to every object in the other menu.
Suppose an observer has information on an agent’s ranking over some menus;
we develop an empirically implementable test to determine if those rankings
are part of an indirect preference. Our result has applications to (1) revealed
price preference, (2) coarse rationalizability, (3) testing multiple preferences,
and (4) testing minimax regret.

Keywords: revealed preference analysis, indirect utility, preference over
prices, imperfect observations, multiple rationales, minimax regret

1 Introduction
This paper explores the structure of indirect preference. Given a set of alternatives
X, we refer to nonempty subsets of X as menus. A preference over menus constitutes
an indirect preference so long as there is a preference over the alternatives in X

such that menu A is preferred to another menu B whenever A contains an object
that is preferred to every object in B. The study of indirect preferences has a long
history in economic theory. Indeed, a basic question in consumer theory concerns
the recovery of the direct preference (over bundles of n goods) from the indirect
preference over the prices of those goods. In this case, plainly, a vector of prices
(with income held fixed at some value) corresponds to a linear budget set, which is
just a specific type of menu from the consumption space X = Rn

+. It is well-known
that the crucial property that makes it possible for a preference over price vectors
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to be a bona fide indirect preference is for the less-preferred price sets to be convex
or, equivalently, for the indirect utility function to be quasiconvex (see Krishna and
Sonnenschein (1990) and Jackson (1986)).

This question could be posed in a more general form that is not specific to the
consumer theory context. Kreps (1979) considers all possible menus drawn from
a set of alternatives X and shows that a preference over these menus constitutes
an indirect preference if and only if it satisfies the following property: an agent
who prefers menu A to B will be indifferent between A and A ∪ B. Tyson (2018)
addresses the same issue in the case where the indirect preference is defined over a
given subcollection of menus.

In this paper, we consider an observer who has access to a finite collection of
observations,M :=

{
(At, Bt)

}
t∈T

. At each observation t, the observer knows that
the agent weakly prefers menu At to Bt; and for a (possibly empty) subcollection S
of those observations, the observer knows that At is strictly preferred to Bt for each
t ∈ S. We say that the data setM can be rationalized if the observed preference
between each pair of menus is part of an indirect preference over menus (induced
by a direct preference over the elements of X). Note that the setting of our result
is different from that of all the papers previously mentioned. In those papers, it is
assumed that the observer knows the complete ranking over the collection of menus
under consideration. In contrast, our result considers the empirically more relevant
case where the observer has only an incomplete ranking over menus; for example,
the observer need not know the agent’s preference between menus At and At′ .

Our paper is a contribution to revealed preference analysis in the tradition
of Afriat (1967), Varian (1982), and its generalizations. These papers formulate
tests that could be — and have been extensively — applied to observational and
experimental data. Similarly, our primary objective is to provide a practical method
of checking whether M :=

{
(At, Bt)

}
t∈T

can be rationalized. Our basic result
establishes thatM can be rationalized if and only if it satisfies the never-covered
property. This property is easy to understand but, far more importantly from an
empirical viewpoint, we also provide an algorithm that allows for this property to
be verified efficiently.

As a simple example of what the never-covered property entails, suppose the
observer knows that the agent strictly prefers menu A to B and weakly prefers A′

to B′. Since there is an alternative in A that strictly dominates everything in B, a
necessary condition for rationalization is that B does not contain A, i.e., A \B 6= ∅.
But this is not all. We also need to check if A′ ⊆ B; if this holds, then clearly there
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is some element in A that dominates every element in B ∪B′ and so A \ (B ∪B′)
must also be nonempty. In other words, some element must remain in A after all of
A’s revealed dominated elements have been iteratively excluded; this property turns
out to be both necessary and sufficient for rationalization.

Our paper is related to Fishburn (1976) which, even though it studies an ostensibly
different rationalizability problem (connected to the issue of coarse rationalizability
discussed below), has a basic result that could be interpreted as a result on indirect
preference. With that interpretation, it provides a characterization of indirect
preference (through a property called the partial congruence axiom) in the special
case where At is strictly preferred to Bt for each t ∈ T . Our never-covered property
is a generalization of the partial congruence axiom that allows for the possibility
that the observer only knows that one menu is weakly preferred to another. This
generalization is nontrivial and it is also crucial in certain applications, including the
application to coarse rationalizability discussed below. Furthermore, we provide an
algorithm for checking the never covered property (and hence the partial congruence
axiom); this issue, which is obviously crucial for empirical applications, is not
addressed in Fishburn (1976).

In some applications, it may not suffice to have a preference onX that rationalizes
a data setM; it may also be desirable to have the preference be the extension of
some given preorder. For example, in the context of consumer demand, it would be
natural to require any rationalizing preference to be increasing in the product order
on the consumption space X = Rn

+. In cases where the space of alternatives X, and
the menus defined on it, contain infinitely many elements, it is also natural to assume
that there is a topology on X and to require preferences over X to be continuous,
which guarantees the existence of optimal elements when menus are compact. We
show that our basic result can be extended to incorporate these features. (These
issues are also not covered in Fishburn (1976).)

We illustrate the relevance of our results for the nonparametric testing of models
with four applications. In some of these applications the problem is not explicitly one
of rationalizing an indirect preference but, nonetheless, it is possible to re-formulate
the problem in a way that makes our basic result applicable.
(1) Revealed price preference. First, we revisit the question of characterizing
an indirect preference/utility function over prices. Instead of assuming that the
preference over prices is completely known (as in Krishna and Sonnenschein (1990)
and Jackson (1986)), we assume that the observer only knows the consumer’s
preference for a finite set of price pairs, i.e., pt is preferred to qt (for t = 1, 2, . . . , T ),
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with income normalized at 1, where a preference for pt over qt means a preference for
the budget set associated with pt over the budget set associated with qt. We show
that there is an increasing, continuous and concave utility function that rationalizes
the observed price preferences provided the latter satisfies a generalization of the
quasiconvex property (on indirect utility functions).
(2) Coarse rationalizability. Consider a data set with T observations; at each
observation t, it is observed that an agent chooses xt from the menu Ct. Various
versions of Afriat’s Theorem (1967)1 answer the following question: what necessary
and sufficient conditions on O = {(xt, Ct)}t∈T guarantee the existence of a utility
function U defined on X such that xt ∈ arg maxx∈Ct U(x) for all observations t?

Afriat’s Theorem requires that the agent’s choice in Ct be precisely observed but
there are at least two reaons why it is helpful to relax this requirement. Firstly, xt

may not be precisely known. For example, a researcher may have information on how
much is spent on broad categories of goods, without knowing the allocation within
each category; alternatively, a researcher may have records on a consumer’s credit
card purchases, which puts a lower bound on how much is spent each month on
different goods, but does not provide the precise breakdown of monthly expenditure
since there could be goods bought with cash. Secondly, it is quite common in
applications of Afriat’s Theorem for data sets to fail rationality and the revealed
preference literature has developed various ways to measure the severity of that
failure.2 A natural, but hitherto unexplored, approach is to relax the rationality
requirement by allowing the optimal choice to live in a ball containing xt, with the
required size of the ball used as a measure of how far O is from being fully rational.

For these reasons, we study coarse data sets, where at observation t, the agent’s
choice is known only to come from a set At ⊆ Ct; given this, rationalization requires
that there be a utility function U such that At ∩ arg maxx∈CtU(x) is nonempty at
each t. This is equivalent to the condition that (considered as menus) At is weakly
preferred to Ct for all t. It follows that the our results could be used to characterize
the rationalizability of coarse data sets and our algorithm provides a way of checking

1 See, for example, Varian (1982), Forges and Minelli (2009), Reny (2015), and Nishimura, Ok
and Quah (2017). For a textbook treatment of Afriat’s Theorem, see Kreps (2013) and Chambers
and Echenique (2016).

2 Halevy, Persitz and Zrill (2018) provide an integrated survey of some of these measures.
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for this property in empirical applications.3

In the Online Appendix, we study data from an experiment where subjects
choose consumption bundles from budget sets. We apply our algorithm for checking
the never-covered property to calculate (for each subject) a perturbation index that
measures the extent to which her consumption choices have to be perturbed to
guarantee rationalizability. These calculations illustrate the ease with which our
results can be applied.
(3) Multiple preferences. In the multiple preferences model (see Aizerman and
Malishevski (1981), Moulin (1985), and Salant and Rubinstein (2008)), an agent’s
choice from a menu C could be the optimal choice for any one of a set of preferences.
An axiomatic foundation for this model in terms of the choices at all possible menus
is already provided by the literature (see Aizerman and Malishevski (1981)) and
our objective is not to provide further motivation/intuition for the model. We are
instead interested in finding an implementable test of this model in the more realistic
setting where only choices from some menus are observed. Formally, the question
we pose is the following: suppose that for a finite collection of menus Ct we observe
the agent’s choices from each menu, which we denote by At; when can we find a
collection of preferences {%i}i∈I such that Zt = At, where Zt consists of all elements
of Ct that are optimal according to some preference %′ in {%i}i∈I ? It turns out that
this problem can be reformulated as a problem of rationalizing menu preferences
and thus could be solved with our results. We characterize rationalizability with
multiple preferences and provide an algorithm for checking if it holds.
(4) Minimax regret. In the minimax regret model (Wald, 1949; Savage, 1951), an
agent has multiple utility functions over alternatives, drawn from a set U . For a
given menu A, the regret of alternative x under one of the agent’s utility functions
u ∈ U is given by maxy∈A u(y)− u(x). The agent evaluates alternative x according
to its maximal regret maxu∈U (maxy∈A u(y)− u(x)), and chooses alternatives from
the choice set that minimize the maximal regret. Applying our core result, we
find a necessary and sufficient condition under which a set of choice data can be
rationalized by this model, with an appropriately chosen U .
Organization of paper. In Section 2, we set out the basic definitions used
throughout the paper. In Section 3, we introduce the main theorem, discuss several

3 Fishburn (1976) considers a related problem which requires arg maxx∈Ct U(x) ⊆ At for all
observations t. This is equivalent to requiring the menu At to be strictly preferred to Ct \At for all
t. We think that our formulation of rationalizability is more appropriate in empirical applications;
unlike Fishburn’s formulation, we allow for the possibility that an alternative in Ct \ At is also
optimal for the agent and it is the natural generalization of the rationalizability notion in Afriat’s
Theorem, which does allow for the optimality of alternatives in Ct \ {xt}.
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of its special cases, and also formulate the algorithm to test the never-covered
property. The four applications of our theory are presented (respectively) in Sections
4, 5, 6, and 7. All omitted proofs are in the Appendix. There is also an Online
Appendix containing secondary results on the never-covered property as well as an
illustrative implementation of our algorithm for checking that property.

2 Preliminaries
We work with a fixed nonempty set X, which can be viewed as the universal set of
alternatives. Let X denote the collection of nonempty subsets of X. We refer to
elements of X as menus. Generic elements of X are denoted by x, y, z, etc, while
generic elements of X are denoted by A, B, C, etc.

A preorder D on X is a binary relation on X that is reflexive and transitive.4

We use B to denote the asymmetric part of D. For a given preorder D on X and a
menu A ∈ X , we define A↓ to be the decreasing closure of A with respect to D, i.e.,

A↓ := {x ∈ X : y D x for some y ∈ A},
and define A↓↓ to be the strictly decreasing closure of A with respect to D, i.e.,

A↓↓ := {x ∈ X : y B x for some y ∈ A}.
The set of D-undominated alternatives in A is denoted by max(A; D) := A \ A↓↓.

A preference % on X is a complete preorder on X. We use � to denote the
asymmetric part of %. When � denotes the asymmetric part of an anti-symmetric
preference, we refer to it as a strict preference. We say that x is a %-maximal
element in A if x ∈ A and x % y for all y ∈ A, and write max(A; %) to denote the
set of %-maximal alternatives in A. When convenient, we write x % A if x % y for
each y ∈ A and x � A if x � y for each y ∈ A.

Oftentimes, it is useful to study preferences restricted to a particular class. We
say that the preference % extends the preorder D if

x % y whenever x D y, and x � y whenever xB y.

We can think of D as an exogenously given dominance relation on X, and view the
statement x D y as saying that x is an objectively better alternative than y, which
the agent’s preference % should respect.

The general choice environment we define here follows that in Nishimura, Ok
and Quah (2017). As a basic example of this environment, we note that in consumer

4 Terminology: a binary relation R on X is a nonempty subset of X ×X, but as usual, we
write xRy instead of (x, y) ∈ R. We say that R is reflexive if xRx for each x ∈ X, transitive if xRy
and yRz imply xRz for each x, y, z ∈ X, complete if either xRy or yRx holds for any x, y ∈ X,
and anti-symmetric if for any x, y ∈ X, xRy and yRx imply x = y. The asymmetric part of R is
defined as the binary relation P on X such that xPy if and only if xRy but not yRx.
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theory, the consumption space with n commodities is typicallyX = Rn
+. Furthermore,

if a consumer always strictly prefers to have more of any good, the the consumer’s
preference would extend the coordinate-wise or product order ≥ on Rn

+.5 Bear in
mind that our setup also allows for a preference without any preorder restrictions:
in this case, the preference extends the trivial preorder D where x D y only if x = y.

3 Rationalizability of menu preferences
In this section, we study the conditions under which a finite list of observed menu
preference pairs collected from an agent is consistent with some (unobserved)
preference on the underlying alternatives. The data collected by the observer
is formally represented asM :=

{
(At, Bt)

}
t∈T

, where T is a nonempty finite index
set and At and Bt are menus. For each t, the observer either knows that the agent
weakly prefers At to Bt or that the agent strictly prefers At to Bt.6 Let W be
the collection of observations where At is weakly preferred to Bt, and let S be the
collection of observations where At is strictly preferred to Bt.7 By definition, {W,S}
is a partition of T . For any nonempty T ′ ⊆ T , we let

A(T ′) :=
⋃
t∈T ′

At and B(T ′) :=
⋃
t∈T ′

Bt.

The following definition specifies precisely what it means forM to be rationalized.

Definition 1. A set of menu preference pairsM =
{

(At, Bt)
}
t∈T

is rationalized by
a preference % on X if for any t ∈ T , there exists xt ∈ At such that

[1] xt % Bt for all t ∈ T and [2] xt � Bt if t ∈ S.
In this case, we say thatM is rationalizable. A preference % D-rationalizesM if

5 Formally, x ≥ y if and only if xi ≥ yi for each i ∈ {1, 2, . . . , n}, and x > y if and only if x ≥ y
and x 6= y. We write x� y if and only if xi > yi for each i ∈ {1, 2, . . . , n}.

6 This formulation includes the case where the observer knows that the agent is indifferent
between two menus (say) A and B, because this case could be considered as two observations, with
the agent weakly preferring A to B in one observation and B to A in the other observation.

7 Our definition of M includes the special case where we imagine an observer who sees an
agent picking a menu from a ‘menu of menus,’ provided each menu of menus consists of only a
finite number of menus. Indeed, if the menu M1 is picked from a collection consisting of menus M1,
M2, and M3, then this choice can be converted to a data set in our format, where M1 is weakly
preferred to M2 and M1 is weakly preferred to M3.
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% rationalizesM and extends D; in this case,M is D-rationalizable.8

Our objective in this section is to characterize those sets of menu preference pairs
M =

{
(At, Bt)

}
t∈T

which can be D-rationalized. Readers familiar with the revealed
preference theory will notice that the issue is fairly straightforward when At is a
singleton for each t. In that case, the problem is (in its essentials) within the scope
of the well-known theorems of Afriat (1967) and Richter (1966) and their extensions;
in the manner of those theorems, some version of a no-cycling condition on the
revealed preference relations defined on {xt}t∈T (which will be stated formally later
in Definition 3) is both necessary and sufficient for the existence of a preference that
extends D and satisfies (1) and (2) in Definition 1.9 Of course, At is typically not
a singleton. Thus, we could understand the issue before us in the following way:
we have to formulate a property onM that guarantees the existence of a selection
xt from At, such that the resulting (notional) set of observations

{
({xt}, Bt)

}
t∈T

satisfies the required no-cycling condition. The next subsection provides the property
guaranteeing that such a selection exists.

3.1 The never-covered property
Suppose that the data setM =

{
(At, Bt)

}
t∈T

is D-rationalized by some preference
relation %. Consider an arbitrary observation t. By the definition of D-
rationalizability, At contains an alternative x with x % Bt. Since % extends
D, x /∈ Bt↓↓. Moreover, if t ∈ S, then At contains an alternative x with x � Bt and
so x /∈ Bt↓. Thus At cannot be covered by (in other words, contained in) Bt↓↓ if
t ∈ W , and cannot be covered by Bt↓ if t ∈ S.

This argument could be generalized to more than one observation. For any
nonempty subset T ′ ⊆ T , notice that (1) if x satisfies x % B(T ′) then x /∈ B(T ′)↓↓;
and (2) if x satisfies x � B(T ′ ∩ S) then x /∈ B(T ′ ∩ S)↓. Thus, if A(T ′) contains

8 Definition 1 is one of several possible formulations of the rationalizability of a set of menu
preference pairs. For example, one could require that for any t ∈ T , (1) for any y ∈ Bt, there
exists x ∈ At such that x % y and (2) there exists xt ∈ At such that xt � Bt if t ∈ S. To see the
(subtle) differences between these two formulations, suppose that the preorder is ≥. The first data
set has only one observation (B, B) where B = (0, 1) and the relation is weak. The second data
set has only one observation (A, B) where A is the set of rational numbers in (0, 1), B = (0, 1),
and the relation is weak. Definition 1 would classify both data sets as not ≥-rationalizable, while
the alternative formulation would classify both as ≥-rationalizable. That being said, in all the
applications that we study (and in most economic environments), either X is finite or X is infinite
but the menus are compact. In these cases, these two formulations are equivalent.

9 To be precise, Nishimura, Ok and Quah (2017) already provides a condition on
{

({xt}, Bt)
}
t∈T

that is necessary and sufficient for the existence of a preference % that extends D and satisfies
xt % Bt for each t ∈ T . In our case, we potentially have observations where we require xt � Bt;
thus a modification of the condition in Nishimura, Ok and Quah (2017) is required to accommodate
these cases, but this extension of their result is fairly straightforward.
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an alternative x̂ satisfying both conditions, then A(T ′) cannot be covered by
B(T ′)↓↓⋃B(T ′ ∩ S)↓. And we can indeed find such an alternative x̂ in A(T ′):
for each t ∈ T ′, pick xt ∈ At such that xt % Bt if t ∈ W and xt � Bt if t ∈ S; then
let x̂ ∈ max({xt}t∈T ′ ;%) ∈ A(T ′). Let t̂ be an observation at which x̂ ∈ At̂.

We are now ready to introduce the procedure that we call the iterated exclusion of
dominated observations. Given a nonempty subset of observations T ′, let Φ0(T ′) :=
∅, and let Φ1(T ′) be the collection of observations t such that At is covered by
B(T ′)↓↓⋃B(T ′ ∩ S)↓, i.e.,

Φ1(T ′) :=
{
t ∈ T ′ : At ⊆ B(T ′)↓↓

⋃
B(T ′ ∩ S)↓

}
.

Since t̂ /∈ Φ1(T ′), we have Φ1(T ′) 6= T ′. Let
Φ2(T ′) :=

{
t ∈ T ′ : At ⊆ B(T ′)↓↓

⋃
B((T ′ ∩ S) ∪ Φ1(T ′))↓

}
.

Obviously, Φ1(T ′) ⊆ Φ2(T ′). Since x̂ % B(T ′) and x̂ � B(T ′ ∩ S), we obtain x̂ � At

for each t ∈ Φ1(T ′); since At is preferred to Bt, we know that x̂ � Bt↓ for each
t ∈ Φ1(T ′). Thus, x̂ � B((T ′ ∩ S) ∪ Φ1(T ′))↓. We conclude that A(T ′) (which
contains x̂) cannot be covered by B(T ′)↓↓⋃B((T ′ ∩ S)∪Φ1(T ′))↓ and so t̂ /∈ Φ2(T ′).
We may repeat this argument for m = 2, 3, . . . , where

Φm+1(T ′) :=
{
t ∈ T ′ : At ⊆ B(T ′)↓↓

⋃
B((T ′ ∩ S) ∪ Φm(T ′))↓

}
.

Since Φm(T ′) is an increasing sequence in m in the set inclusion sense and T ′ is
finite, the procedure stops at m∗ when Φm∗(T ′) = Φm∗+1(T ′). Let Φ(T ′) := Φm∗(T ′);
we refer to Φ(T ′) as the set of revealed dominated observations (or simply dominated
observations) in T ′. Since B(T ′)↓↓⋃B((T ′∩S)∪Φ(T ′))↓ cannot contain x̂, we obtain
t̂ /∈ Φ(T ′). Thus Φ(T ′) is a strict subset of T ′.

Definition 2. M =
{

(At, Bt)
}
t∈T

satisfies the never-covered property (NCP) under
D if, for any nonempty T ′ ⊆ T , the set of revealed dominated observations Φ(T ′)
satisfies Φ(T ′) 6= T ′.

We have shown that NCP under D is a necessary condition for a data set to be
D-rationalizable. The main result of this paper, Theorem 1, shows that it is also
sufficient. The example below illustrates how we can use NCP under D to test the
D-rationalizability a set of menu preference pairs.

Example 1. Consider the classical model of consumer demand with two goods.
We take the preorder to be the coordinate-wise ordering ≥ on X = R2

+. Figure
1(a) depicts linear budget sets, Kp, Kq, and Kr. Suppose thatM consists of two
observations, (Kp, Kq) and (Kq, Kr), where both relations are weak. We claim that
M is not ≥-rationalizable.
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Figure 1: (a) The data setM = {(Kp, Kq)), (Kq, Kr)}, where both relations are
weak, is not ≥-rationalizable; (b) the data set M̂ = {(K̂p, K̂q)), (K̂q, K̂r)}, where
both relations are weak, is ≥-rationalizable.

Suppose to the contrary thatM is ≥-rationalizable, say, by a preference relation
%. Then, there exists at least one bundle x̂ contained in Kp such that x̂ % Kq ∪Kr.
But this is impossible since Kp ⊆ (Kq ∪Kr)o and so there is y ∈ Kq ∪Kr such that
y > x̂, which ensures that y � x̂.10 Notice that our argument corresponds precisely
to a violation of NCP under ≥ for T ′ = T . Since B(T )↓↓⋃B(T ∩ S)↓ = (Kq ∪Kr)o

covers Kp, Φ1(T ) contains the observation (Kp, Kq). Since Kq ⊆ B(Φ1(T )), Kq ⊆
B(T )↓↓⋃B((T ∩ S) ∪ Φ1(T ))↓ and Φ2(T ) = T . Thus, Φ(T ) = T .

On the other hand, the data set M̂ = {(K̂p, K̂q)), (K̂q, K̂r)}, where both relations
are weak, is ≥-rationalizable if the budget sets are the ones depicted in Figure 1(b).11

In this case, the optimal bundle in each set must be x∗, and it is easy to check that
the set Φ(T ) is empty.

3.2 The basic result
Our proof of the sufficiency of NCP under D in guaranteeing the D-rationalizability
ofM proceeds by explicitly providing a way of selecting xt in At for each t such
that there exists a preference % on X that extends D and satisfies (1) xt % Bt

for all t ∈ T and (2) xt � Bt for t ∈ S (see Definition 1). Suppose that we have
selected xt from At for each t in some way. How do we check whether there exists a
preference with the required conditions? This can be characterized by a no-cycling
property which we now explain.

10 For any set K, we use Ko to denote its interior.
11 The 45 degree line in Figure 1(b) will be used in Example 4.
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Let Y = {xt}t∈T . For xt and xt
′ in Y , we say that xt is revealed preferred to xt′

and denote it by xtRxt′ if xt′ ∈ Bt↓, and we say that xt is revealed strictly preferred
to xt′ and denote it by xt P xt′ if either (i) xt′ ∈ Bt↓↓ or (ii) t ∈ S and xt

′ ∈ Bt↓.
The following is a no-cycling condition on the binary relations R and P .

Definition 3. Given a data setM =
{

(At, Bt)
}
t∈T

, a selection xt from At for each
t ∈ T is a no-cycling selection under D if the revealed preference relations R and
P obey the following no-cycling property: there does not exist xt1, xt2 . . . , xtn in
{xt}t∈T such that

xt1 Rxt2 R · · ·Rxtn and xtn P xt1 . (1)

To see why this could be a plausible characterization, note that it is plainly a
necessary condition. Indeed, suppose the preference % extends D and, with this
preference, xt satisfies (1) xt % Bt for all t ∈ T and (2) xt � Bt for t ∈ S. If
xt is revealed preferred to xt′ , then by definition, xt % y D xt

′ for some y ∈ Bt;
since % extends D and % is transitive, we obtain xt % xt

′ . If xt is revealed strictly
preferred to xt′ , then we have either (i) xt % y B xt

′ for some y ∈ Bt or (ii) t ∈ S
and xt � y D xt

′ for some y ∈ Bt; in both cases, we conclude that xt � xt
′ . Since %

is transitive, we plainly cannot have xt1 , xt2 . . . , xtn in {xt}t∈T satisfying (1).
We have just shown that if a data set is D-rationalizable, then it admits a

no-cycling selection under D. Theorem 1 below states that the converse is also true
and that both are equivalent to NCP under D.

Theorem 1. Given a set of menu preference pairs M =
{

(At, Bt)
}
t∈T

and a
preorder D, the following statements are equivalent:

(1) M is D-rationalizable.
(2) M satisfies NCP under D.
(3) M admits a no-cycling selection under D.

3.3 Algorithm
Given a subset T ′, it is straightforward to check whether Φ(T ′) = T ′. Thus,
Theorem 1 provides us with a way of checking if a set of menu preference pairs is
D-rationalizable: we need to check whether Φ(T ′) 6= T ′ for all T ′ ⊆ T . This may not
seem promising as an empirical procedure, since for a data set with n observations,
we would have to go through all 2n − 1 nonempty subsets of T to guarantee the
D-rationalizability of that set. In this subsection, we provide a simple algorithm to
check whether NCP under D holds. This algorithm requires us to check whether
Φ(T ′) 6= T ′ for at most n subsets of T . Thus, NCP under D can be checked in an
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efficient manner. In the Online Appendix we provide an implementation of this
algorithm on experimental data, for two different preorders D; more details are
provided in Section 5.3 (Example 6).

Following the convention in the computer science literature, we use k′ to denote
the updated value of a variable k.

Algorithm I. Set T 0 := T . Set k := 1.
Start. Derive T k := Φ(T k−1). Consider the following mutually exclusive cases:

(a). T k = ∅: Stop and output D-Rationalizable.
(b). ∅ 6= T k ( T k−1: Go to Start with k′ = k + 1.
(c). ∅ 6= T k = T k−1: Stop and output Not D-Rationalizable.

Note that Algorithm I is effectively checking whether Φ(T k) = T k for an endogenous
sequence of subsets of T . We emphasize that, for a data set with n observations,
Algorithm I necessarily terminates within n steps, and we only need to check at
most n subsets of T .

Proposition 1 below provides the justification for Algorithm I.

Proposition 1. The set of menu preference pairs M =
{

(At, Bt)
}
t∈T

is D-
rationalizable if and only if Algorithm I outputs D-Rationalizable.

3.4 Nice rationalization when D is trivial
The analysis in the previous subsections holds for any preorder D and any partition
{W,S} of T . In this subsection, we focus on the important special case in which the
rationalizing preference is not required to extend any given preorder or, put another
way, the preorder D is simply the trivial preorder where x D y if and only if x = y.

Consider a set of menu preference pairs M =
{

(At, Bt)
}
t∈T

where S is
nonempty.12 Since D is trivial, A↓ = A and A↓↓ = ∅ for all A. Thus, the procedure
of iterated exclusion of dominated observations reduces to the following: for any
nonempty T ′ ⊆ T ,

Φ1(T ′) =
{
t ∈ T ′ : At ⊆ B(T ′ ∩ S)

}
and

Φm+1(T ′) =
{
t ∈ T ′ : At ⊆ B ((T ′ ∩ S) ∪ Φm(T ′))

}
, for m = 1, 2, . . . .

This iteration must stop at some point, i.e., there is m∗ such that Φm∗(T ′) =
Φm∗+1(T ′). The set of dominated observations is Φ(T ′) := Φm∗(T ′). By definition,
M satisfies NCP under the trivial preorder if Φ(T ′) 6= T ′ for all nonempty T ′ ⊆ T .
For the sake of brevity, we would simply refer toM as satisfying NCP, if it satisfies
NCP under the trivial preorder.

12 If D is trivial, then any data set such that S = ∅ is rationalizable (by the preference relation
that the agent is indifferent among all alternatives).
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The following example is a simple illustration of the application of Theorem 1
and Algorithm I to this setting.

Example 2. Let X = {x, y, z, r, w} and suppose that D is trivial. The data setM
consists of the following observations:

A1 = {x, y}, B1 = {z, r, w}; A2 = {y, z}, B2 = {x, r, w};

A3 = {x, r}, B3 = {y, z, w}; A4 = {r, w}, B4 = {z}.
where A1 is strictly preferred to B1 and the other relations are weak. In this case,
T = {1, 2, 3, 4} and S = {1}. Since A4 ⊆ B1, we obtain Φ1(T ) = {4}. Since
B1 ∪ B4 = B1, Φ2(T ) = {4}, and thus Φ(T ) = {4}. Algorithm I now directs us
to calculate Φ({4}); this set is empty and so Algorithm I concludes that M is
rationalizable. And indeed it is: for example, the preference x ∼ y � r ∼ w ∼ z

rationalizesM.

The following definition imposes a stronger notion of rationalizability than the
one provided in Definition 1 because the preference % is required to have an optimum
in every menu in the list of observations.

Definition 4. A set of menu preference pairs M =
{

(At, Bt)
}
t∈T

is nicely
rationalized by a preference % on X if it is rationalized by % on X and max(At; %)
and max(Bt; %) are nonempty for each t ∈ T . In this case, we say thatM is nicely
rationalizable. A preference % nicely D-rationalizesM if % nicely rationalizesM
and extends D; in this case, we say thatM is nicely D-rationalizable.

In general, it is possible for a preference to rationalize a data set without it being
a nice rationalization. Of course, this cannot happen when X is finite, since the
existence of an optimum given a preference is then guaranteed. The next result says
that it cannot happen when the preorder is trivial either, in the sense that every
data set that is rationalizable (by some preference) is also nicely rationalizable (by
a possibly different preference).

Theorem 2. The following statements on the data set M =
{

(At, Bt)
}
t∈T

are
equivalent:

(1) M is rationalizable.
(2) M satisfies NCP.
(3) M is nicely rationalizable.

Example 3. As an illustration of Theorem 2, consider the case in which the data
set consists of just one observation: A1 = {1}, B1 = (0, 1), with A1 strictly preferred
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to B1. Can this data set be rationalized by a preference that extends the standard
total order ≥ on R? Clearly, such a rationalization exists; in fact, ≥ is itself the
unique rationalization. However, this is not a nice rationalization since (0, 1) does
not have an optimum according to ≥. On the other hand, Theorem 2 guarantees
that there is a nice rationalization of the strict preference of A1 over B1 if we do
not require the rationalizing preference to extend ≥. And indeed it does: simply let
1 � r for all r < 1, and for all r, r′ ∈ (0, 1) let r ∼ r′.

3.5 Strict menu preferences and strict rationalization
We now turn to the case in which D is trivial and T = S, so that the rationalizability
of a data setM =

{
(At, Bt)

}
t∈T

reduces to the following: there exists a preference
% on X such that for each t, there exists x ∈ At with x � Bt. This case is of
particular interest, as the procedure of iterated exclusion of dominated observations
ends in one round and NCP has a much simpler form. To wit, since T = S, for any
nonempty T ′ ⊆ T , B(T ′ ∩ S) = B(T ′). Thus, the procedure of iterated exclusion of
dominated observations reduces to the following: for any nonempty T ′ ⊆ T ,
Φ1(T ′) =

{
t ∈ T ′ : At ⊆ B(T ′ ∩ S)

}
=
{
t ∈ T ′ : At ⊆ B(T ′)

}
and

Φ2(T ′) =
{
t ∈ T ′ : At ⊆ B((T ′ ∩ S) ∪ Φ1(T ′))

}
=
{
t ∈ T ′ : At ⊆ B(T ′)

}
= Φ1(T ′).

Therefore, the set of dominated observations is Φ(T ′) = {t ∈ T ′ : At ⊆ B(T ′)}, and
NCP, i.e., Φ(T ′) 6= T ′, holds if and only if A(T ′) 6⊆ B(T ′).

We note that this special case of our result is (in its essentials) covered by
Fishburn (1976), who establishes that there is % such that there is xt ∈ At with
xt � Bt for each t if and only if

A(T ′) 6⊆ B(T ′) for all nonempty T ′ ⊆ T . (2)
Following Fishburn, we refer to (2) as the partial congruence axiom. In fact,
Fishburn’s result is somewhat more general because it partially covers the case in
which T is infinite.13 We confine our attention to the case where T is finite because
it is the case most relevant to empirical applications and it allows us to formulate
an efficient algorithm for checking NCP.14

13 Fishburn (1976) considers two separate cases. For the case in which T could be infinite but
At is required to be finite for each t, he shows that rationalizability is characterized by the partial
congruence axiom. When T is countable and At is allowed to be infinite, his characterization result
(Theorem 3) takes a different form, but it is equivalent to the partial congruence axiom when T is
finite. The case in which T is more than countable and At is infinite is not covered by his results
(or ours).

14 If T is infinite, then there is obviously no hope of any algorithm for checking rationalizability.
Fishburn’s paper (perhaps partly because of its emphasis on the case of infinite T ) does not discuss
algorithms for checking the partial congruence axiom.
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The following result summarizes our findings when menu preferences are strict.

Corollary 1. For a data set M =
{

(At, Bt)
}
t∈T

where T = S, the following
statements are equivalent:

(1) M is nicely rationalizable.
(2) M is nicely rationalizable by a strict preference.
(3) M satisfies the partial congruence axiom.

The equivalence of the first and second statements in this corollary is due to
Fishburn (1976, Lemma 1). As we have explained, the partial congruence axiom
and NCP are equivalent when T = S and thus the equivalence of the first and third
statements follows from Theorem 2.

When S is a strict subset of T (so that there are some observations where
rationalization only requires xt ∈ At such that xt % Bt rather than xt � Bt), the
partial congruence axiom no longer characterizes rationalizable data sets and one
needs to appeal to NCP. Indeed, consider the data set in Example 2; is it possible
for T = S? The answer is ‘No’ because A(T ) = B(T ) and the partial congruence
axiom is violated. However, if we only require the relation in the first observation to
be strict (as we did in that example), then the data set is rationalizable because it
satisfies the (weaker) never-covered property.

We now discuss the relationship between our work and the paper of de Clippel
and Rozen (2021). We first describe the problem it solves using our terminology.
It assumes that the preorder D is trivial and considers finite data sets where each
observation t has the form ({Atj}j∈J(t), x

t), where {Atj}j∈J(t) is a collection of subsets
of X. It develops an algorithm that determines if

{
({Atj}j∈J(t), x

t)
}
t∈T

admits an
upper contour rationalization in the following sense: there is a strict preference �
such that, at each t, there is a set in the collection {Atj}j∈J(t) that is contained in
the upper contour of xt, i.e., there is Atj(t) in {Atj}j∈J(t) such that Atj(t) � x.15

This problem and our menu rationalization problem have different economic
motivations; however, when X is finite (so that all the relevant subsets in both
problems are also finite), the two problems could be thought of as equivalent in the
sense that it is always possible to convert one problem into the other, which also
means that any algorithm developed for one could, in principle, be used to solve the
other. That said, it should be clear from the conversion procedure (outlined in the
Online Appendix) that there is no general computational reason for solving either

15 At
j(t) � x means that y � x for all y ∈ At

j(t). A version of their algorithm is contained in the
first working paper version of their paper; see de Clippel and Rozen (2012).
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problem in this roundabout fashion, since the converted data set would typically
have more observations than the original data set. Thus, the two algorithms are
best understood as distinct and serving different purposes.

3.6 Related results on menu preferences
Let X̂ ⊆ X be a nonempty collection of menus and %M a preference over X̂ (which
means that%M is a reflexive, transitive, and complete binary relation on X̂ ). Abusing
our terminology somewhat, we say that a preference % on X nicely rationalizes %M

if, for all D ∈ X̂ , the set max(D; %) is nonempty and, for any x′ ∈ max(D′; %) and
x′′ ∈ max(D′′; %), we have x′ % x′′ if D′ %M D′′ and x′ � x′′ if D′ �M D′′.

Following Tyson (2018), we say that a menu preference %M over X̂ satisfies the
cover dominance condition if for any A,D ∈ X̂ and {Bi}i∈I ⊆ X̂ ,

A �M Bi for each i ∈ I and D ⊆ ∪i∈IBi ⇒ A �M D.

This condition can be equivalently formulated as follows (see Scapparone (2001)): for
all A ∈ X̂ , the set A \ ⋃B∈V(A) B is nonempty, where V(A) := {B ∈ X̂ : A �M B}.
It is shown in Scapparone (2001) and Tyson (2018) that a menu preference %M on
X̂ is nicely rationalizable if and only if it satisfies the cover dominance condition.

Furthermore, as observed in Tyson (2018), if X̂ is finite and closed under union,
the cover dominance condition is equivalent to Kreps consistency, which requires
the following: if A %M B then A ∼M A ∪ B.16 Thus the equivalence of the cover
dominance condition and the nice rationalizability of %M can be thought of as a
generalization of the following result in Kreps (1979): if X is finite and X̂ = X
(the collection of all nonempty subsets of X) then the menu preference %M is nicely
rationalizable if and only if it satisfies Kreps-consistency.

In our setup, it is assumed that M, a finite list of preference pairs between
menus At and Bt, is observed. Its key difference with Kreps (1979), Scapparone
(2001), and Tyson (2018) is that these observations need not constitute a preference
over all the menus in X̂ = {At}t∈T ∪ {Bt}t∈T ; in other words, we do not require the
observer to know how At compares with At′ or with Bt′ .

Provided that the collection of menus X̂ is finite, we could construct a finite set
of menu preference pairsM∗ from a preference %M on X̂ in the following way:

(At, Bt) ∈M∗ if and only if At %M Bt and t ∈ S if and only if At �M Bt.

Clearly,M∗ is nicely rationalizable (in the sense of Definition 4) by a preference
% if and only if % nicely rationalizes the menu preference %M . By Theorem 2, the
nice rationalizability of %M is characterized by NCP on M∗. In particular, this

16 We denote by ∼M the equivalence relation induced from %M .
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means that one can efficiently check if %M is nicely rationalizable by implementing
Algorithm I for checking NCP. It also follows immediately from Theorem 2 and the
results in Tyson (2018) that, when X̂ is finite, the cover dominance condition on
%M and NCP onM∗ are equivalent; furthermore, if X̂ is also closed under union,
then each of these conditions is equivalent to Kreps-consistency.

3.7 Continuous rationalizability
When the space of alternatives X is infinite, it is helpful to endow it with a topology
and study continuous preferences. This guarantees (among other things) that the
preference generates an optimum choice on compact menus and that the optimum
varies continuously with the menu. For example, a continuous preference on the
consumption space Rn

+ would guarantee that the demand correspondence is nonempty
when prices are strictly positive (so that the budget set is compact) and varies
continuously with prices.17

We say that a set of menu preference pairsM =
{

(At, Bt)
}
t∈T

is D-rationalized
by a continuous utility function u : X → R if u represents a preference % that
D-rationalizesM in the sense of Definition 1. Theorem 3 below provides conditions
under whichM can be rationalized by a continuous utility function.

Theorem 3. Suppose that X is a locally compact and separable metric space and D is
a continuous preorder on X.18 For a set of menu preference pairsM =

{
(At, Bt)

}
t∈T

where Bt is compact for each t ∈ T , the following statements are equivalent:

(1) M is D-rationalizable.
(2) M satisfies NCP under D.
(3) M is D-rationalized by a continuous utility function u.

Note that this theorem does not assume that At is a compact set. It does assume
that Bt is a compact set, which guarantees that for any continuous utility function
u, the set arg maxx∈Bt u(x) is nonempty. If, in addition, At is a compact set for all t,
then arg maxx∈At u(x) is also nonempty for all t and thusM is nicely D-rationalized
by a continuous utility function u ifM satisfies NCP under D.

The following example illustrates the application of Theorem 3.

Example 4. Let X = Rn
+ be the consumption space with n goods and let the

product order ≥ to be underlying preorder. Then utility function u extends ≥
17 More generally, if we endow the collection of compact menus with the Hausdorff metric, then

the correspondence mapping a compact menu to its optima is well-defined and upper hemicontinous.
18 Terminology: a preorder D is continuous (or closed) if {(x, y) ∈ X ×X : x D y} is a closed

set in X ×X.
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if and only if it is strictly increasing, in the sense that u(x′) > u(x) whenever
x′ > x. The order ≥ is continuous in the Euclidean topology on Rn

+. Suppose that
M =

{
(At, Bt)}t∈T , where At and Bt are compact sets; Theorem 3 guarantees that

M can be nicely rationalized by a strictly increasing and continuous utility function
if and only if it obeys NCP under ≥.

There are other preorders besides the product order that could be natural in this
setting. For example, X = Rn

+ could be the space of contingent consumption, where
the probability of each state is known (or part of the hypothesis). Based on these
probabilities, different bundles in X could be ranked according to the first order
stochastic dominance, i.e., x ≥FSD y if x first order stochastically dominates y. For
example, suppose that the states are equiprobable; then x ≥FSD y and y ≥FSD x

if the entries in y are a permutation of those in x. In this case, a utility function
that extends ≥FSD is simply a utility function that is strictly increasing in ≥ and
symmetric.

Obviously, ≥FSD is a finer order than ≥ in the sense that ≥⊆≥FSD. It is
also straightforward to check that ≥FSD is a continuous preorder. Suppose that
M =

{
(At, Bt)

}
t∈T

and At and Bt are compact for all t; by Theorem 3,M satisfies
NCP under ≥FSD if and only if it admits a nice rationalization by a continuous
utility function that extends ≥FSD.

Consider the example depicted in Figure 1(b), where K̂p is weakly preferred to K̂q

in observation 1 and K̂q is weakly preferred to K̂r in observation 2. Since NCP under
≥ is satisfied, these observations can be rationalized by a continuous and strictly
increasing utility function. However, they are not rationalizable by a preference
that extends ≥FSD when states 1 and 2 are equiprobable. Notice that for every
(a, b) ∈ K̂p, there is (a′, b′) ∈ K̂q such that either (a′, b′) > (a, b) or (b′, a′) > (a, b);
thus K̂p ⊆ K̂q↓↓.19 Thus, NCP under ≥FSD is violated for {(K̂p, K̂q)}.

4 Application: Revealed price preference
One of the major themes in classical consumer theory is the recovery of the utility
function from indirect utility. Formally, the question can be posed in the following
way. Let v : Rn

++ → R be a function. What necessary and sufficient conditions on v
guarantee that

v(p) = max{u(x) : p · x ≤ 1} (3)

19 From Figure 1(b), it is clear that K̂p is contained in the interior of K̂q ∪ (K̂q)′, where (K̂q)′
is the reflection of K̂q on the 45 degree line.
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for some function u : Rn
+ → R (interpreted as the consumer’s utility function)? This

question has been thoroughly studied (see, for example, Krishna and Sonnenschein
(1990) and Jackson (1986)) and it is well-known that the distinctive property that v
necessarily satisfies is quasiconvexity.

Our objective in this section is to address a finite analog of this question: instead
of recovering u from the function v we ask what conditions would allow us to recover
a preference on the underlying bundles that are consistent with a finite list of
preferences over prices. Of course, the quick and short answer to the issue before us
is NCP, but the additional structure of the consumer problem, with linear budget
sets in Euclidean space, allows us to say more.

We work with a data set with T observations, where at each observation t, the
consumer reports either a weak or strong preference between two price vectors.
Following our convention, if t ∈ W , then the consumer weakly prefers the price
vector pt to qt. If t ∈ S, then the consumer strictly prefers the price vector pt to qt.
Without loss of generality, we normalize the income of the consumer to be 1, so that
the consumer’s budget set at price p ∈ Rn

++ is
L(p) :=

{
x ∈ Rn

+ : p · x ≤ 1
}
.

A preference for pt over qt means a preference for the budget L(pt) over L(qt). Thus
the set of preferences over budget sets may be denoted byM =

{
(L(pt), L(qt))

}
t∈T

.
The next result is an application of Theorem 3 to this environment.

Theorem 4. The following statements onM =
{

(L(pt), L(qt))
}
t∈T

are equivalent:

(1) M can be rationalized by a locally nonsatiated preference on Rn
+.20

(2) M satisfies NCP under the product order ≥.
(3) M can be nicely rationalized by a strictly increasing, continuous, and concave

utility function u : Rn
+ → R.

A straightforward application of Theorem 3 tells us thatM satisfies NCP under
≥ if and only if it can be rationalized by a strictly increasing and continuous utility
function. The latter statement is replaced in Theorem 4 by both a weaker statement
(rationalization by a locally nonsatiated preference) and a stronger statement
(rationalization by a strictly increasing, continuous, and concave utility function). A
proof of Theorem 4 is in the Appendix, but it is worth noting the following here. In
establishing that Statement (1) implies (2), we cannot simply appeal to the argument
in Section 3.1 because in that case we make the assumption that the rationalizing

20 A preference % is locally nonsatiated if for every x ∈ Rn+ and every open neighborhood N
around x, there exists x′ ∈ N such that x′ � x.
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preference % extends a preorder; however, the local nonsatiation assumption on %

in this context allows us to retrace that argument, essentially because for any linear
budget set L (assuming strictly positive prices), L↓ = L and L↓↓ is the interior of L.
As for the implication from (2) to (3), the linearity of the budget sets is crucial in
guaranteeing that the rationalizing utility function can be chosen to be concave; our
proof of that implication combines Theorem 3 with Afriat’s Theorem (see Afriat
(1967)) which guarantees rationalization with a concave utility function.

We know from standard consumer theory that quasiconvexity plays a crucial role
in the characterization of the indirect utility function v. NCP could be thought of
as the finite analog to quasiconvexity. In the case in which all the price preferences
inM =

{
(L(pt), L(qt))

}
t∈T

are strict, i.e., T = S, this connection is especially clear
and is presented in Corollary 2 below.

To motivate the characterizing condition in Corollary 2, suppose that M is
rationalized by a continuous utility function u. This induces an indirect utility
function v (as defined by (3)) that is decreasing in prices and quasiconvex. Given
T ′ ⊆ T , there is t∗ ∈ T ′ such that v(pt∗) ≥ v(pt) for all t ∈ T ′ and s∗ ∈ T ′ such that
v(qs∗) ≥ v(qt) for all t ∈ T ′. Since T = S, v(ps∗) > v(qs∗) and since v is quasiconvex,
v(qs∗) ≥ v(q) for all q ∈ conv

(
{qs}s∈T ′

)
(the convex hull of {qs}s∈T ′). Thus

v(pt∗) ≥ v(ps∗) > v(qs∗) ≥ v(q)
for all q ∈ conv

(
{qs}s∈T ′

)
. Since v is decreasing, we conclude that pt∗ 6≥ q for any

q ∈ conv
(
{qs}s∈T ′

)
. It turns out that this quasiconvex-like property is precisely

equivalent to NCP.

Corollary 2. When T = S, the following statements onM =
{

(L(pt), L(qt))
}
t∈T

are equivalent:

(1) M can be rationalized by a preference on Rn
+.

(2) M has the following property: for any nonempty T ′ ⊆ T , there is t∗ ∈ T ′ such
that pt∗ 6≥ q for any q ∈ conv

(
{qs}s∈T ′

)
.

(3) M can be nicely rationalized by a strictly increasing, continuous, and concave
utility function u : Rn

+ → R.

We provide an extension of Corollary 2 to the case where W is nonempty in
Section A of the Online Appendix.

5 Application: Coarse rationalizability
So far in this paper, we have considered the rationalization of a set of menu preference
pairs. In this section, we discuss a formally related but economically distinct issue,
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namely, the rationalization of choices from menus. Our contribution is to provide
a method for testing rationalizability in situations where observations are coarse,
in a sense we shall make specific. Among other things, we provide an extension of
Afriat’s Theorem to this environment. In turn, an application of this generalized
Afriat’s Theorem provides us with a way to compute the size of the errors needed to
rationalize a data set where choices are made, or observed, with error.

5.1 Four concepts of rationalization
Suppose that at observation t, there is a menu Ct and a set At ⊆ Ct. Two notions
of rationalization are commonly used in analyses of this type. The first concept
requires a preference % such that At = max(Ct; %) for all t ∈ T ; Richter’s Theorem
(see Richter (1966)) characterizes data sets which are rationalizable in this sense.
The second concept requires a preference % such that At ⊆ max(Ct; %) for all
t ∈ T ; Afriat’s Theorem (and its generalizations to nonlinear domains) characterize
data sets that satisfy this concept of rationalization. Loosely speaking, the first
notion of rationalization is the one most commonly used in the theoretical revealed
preference literature; on the other hand, empirical work using revealed preference
have mostly relied on the second (weaker) notion, which is unsurprising since it does
not posit that the observer has observed all the optimal choices, but only one, or
some, of them.

A third concept of rationalization has been characterized in Fishburn (1976),
where the set of optimal points is required to be contained in At; in other words,
max(Ct; %) ⊆ At. Obviously, Fishburn’s concept generalizes the one in Richter’s
Theorem by allowing some elements of At to be nonoptimal, but it retains the
requirement that nothing outside of At is optimal. This suggests that a fourth
concept of rationalization may be useful in empirical applications: one that allows
for the possibility that some elements in At are nonoptimal (following Fishburn)
and also that some elements outside of At are optimal (following Afriat). In formal
terms, it requires that max(Ct; %) ∩ At 6= ∅.

The revealed preference literature since the 1970s have by and large neglected
Fishburn’s rationalization concept. We think that Fishburn’s concept, as well as
the relaxation of that concept which we just proposed, deserves notice because they
are relevant to empirical applications of revealed preference. These concepts are
applicable whenever there are coarse observations, where the observer knows (or
hypothesizes) that there is an optimal choice found in At, but is agnostic about
precisely which alternatives within At are optimal. There are at least three broad
scenarios where it is useful to think of coarse observations.
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(1) The most obvious cases are those where the observations are simply known to be
imprecise. For example, a researcher may have information on how much is spent
on broad categories of goods, without knowing the allocation within each category.
Alternatively, a researcher may have records on a consumer’s credit card purchases,
which puts a lower bound on how much is spent each month on different goods, but
does not provide the precise breakdown of monthly expenditure since there could be
goods bought with cash.
(2) There could be situations where some alternative yt is recorded as the choice
from Ct but, in testing for rationality or estimating the preference, the researcher
may wish to accommodate the possibility that choices were observed with error;
this could be accomplished by defining a neighborhood At around yt (in some sense
appropriate to the specific context) and then checking if there is a preference % with
max(Ct; %) ∩ At 6= ∅ for all t ∈ T .
(3) In experimental settings, it is common to find subjects whose choice behavior are
not exactly consistent with rationality. Since the choices yt are typically observed
perfectly, it is implausible to attribute the rationality violations to observational
errors. Nonetheless, one could still use the size of the neighborhood At (suitably
measured) as a way of comparing the rationality of different experimental subjects;
those who require large Ats to rationalize their behavior can be deemed less rational
than those where At is just a small neighborhood of yt.

5.2 Coarse data sets and menu preferences
We consider an observer who has a finite set of coarse observations of an agent’s
choices. We denote a coarse data set by O =

{
(At, Ct)

}
t∈T

where {W,S} is a
partition of T and for each t ∈ T we have ∅ 6= At ⊆ Ct. The interpretation is as
follows. When t ∈ W , At contains at least one choice of the agent in Ct; when t ∈ S,
At contains all the choices of the agent in Ct. The observer would like to recover a
preference % that rationalizes the data in the following sense.

Definition 5. A preference % on X rationalizes the coarse data set O ={
(At, Ct)

}
t∈T

if
(1) max(Ct; %)∩At 6= ∅ for each t ∈ W and (2) max(Ct; %) ⊆ At for each t ∈ S.
If % exists, we say that O is rationalizable. If % can be chosen to rationalize O and
extend a given preorder D, then O is D-rationalizable.

Obviously, conditions (1) and (2) in this definition correspond precisely to the
fourth and third concepts of rationalization discussed in Section 5.1. Note that if
T = W , then every coarse data set is trivially rationalized by a preference that
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is indifferent across all alternatives; in this case, the rationalizability problem is
interesting only if the preference is required to be locally nonsatiated or to extend
some preorder D.

Checking if a coarse data set is rationalizable is straightforward, given the results
on menu preference pairs we have developed in Section 3. Indeed, for any coarse data
set O =

{
(At, Ct)

}
t∈T

, we could construct the following setM∗ of menu preference
pairs: the menu At is weakly preferred to the menu Ct for all t ∈ T and At is strictly
preferred to the menu Ct \ At for t ∈ S. Clearly,M∗ is rationalized by a preference
% if and only if the coarse data set O is rationalizable by the same preference %.
Thus every result we have on the rationalizability (or D-rationalizability) of the set
of menu preference pairsM∗ has an analog for O.

In the following subsection, we extend Afriat’s Theorem to coarse data sets.

5.3 A generalization of Afriat’s theorem
We consider a data set O =

{
(At, L(pt, yt))

}
t∈T

where for each t ∈ T , pt ∈ Rn
++ is

the price vector, yt is the total expenditure, and L(pt, yt) := {x ∈ Rn
+ : pt · x ≤ yt}

is the budget set at observation t.21 Departing from the standard setting of Afriat’s
Theorem, the observer does not know the exact choice of the consumer and only
knows that the choice lies in At ⊆ L(pt). The following result provides us with a
test of coarse rationalizability in this setting.

Theorem 5. Let O =
{

(At, L(pt, yt))
}
t∈T

be a coarse data set where T = W and
At ⊆ L(pt, yt) for all t ∈ T . The following statements are equivalent:

(1) O can be rationalized by a locally nonsatiated preference.
(2) O satisfies NCP under the product order ≥.22

(3) O can be rationalized by a strictly increasing, continuous, and concave utility
function.

Example 5. In studies of consumer demand, a researcher would often not have
information on the demand for every relevant good. A common way to address
this issue is to perform some aggregation procedure across goods, even though this
approach is strictly valid only under stringent conditions on the utility function
and/or the pattern of prices changes.

To be more specific, suppose that at observation t, the information available
consists of the prices of all goods pt ∈ Rn

++, the demand for the first m− 1 goods,

21 Note that we depart from the convention and notation of the previous section by not
normalizing expenditure at 1. This presentation is more appropriate in this section to highlight
the fact that total expenditure yt is part of the observer’s data.

22 In this statement, we are interpreting O as a set of weak menu preference pairs.
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and the total expenditure on the remaining goods (which we denote by ctm,n). In
other words, the actual demand for goods m, m+ 1, . . . , n is not observed. To get
round this problem, the researcher could construct a price index for those goods, p̄tm,
which would be a function of their prices (ptm, ptm+1, . . . , p

t
n), with the corresponding

demand for the composite good being x̄tm = ctm,n/p̄
t
m. In this way, the researcher

creates a data set of the standard form, with prices (pt1, pt2, . . . , p̄tm) and demand
(xt1, xt2, . . . , x̄tm) for m goods at each observation.

Coarse data sets offer a potentially useful alternative approach to tackle this
problem. At observation t, the researcher observes xti for i = 1, . . . ,m− 1 and ctm,n.
Thus the demand of the consumer must lie in the set

At = {x ∈ Rn
+ : xi = xti for i = 1, . . . ,m− 1 and ∑n

i=m pixi = ctm,n}.
The corresponding coarse data set isO = {(At, L(pt, yt))}t∈T , where yt = ∑m−1

i=1 ptix
t
i+

ctm,n. This can be analyzed using Theorem 5.
As an illustration, suppose that O consists of two observations where

p1 = (2, 2.5, 3.5), x1
1 = 1.5, c1

2,3 = 9, y1 = 12
p2 = (4, 3, 3), x1

1 = 3, c1
2,3 = 4.5, y2 = 16.5.

This data set is coarse rationalizable. Indeed, the bundle x̃ = (1.5, 9/2.5, 0) is in
A1 but p2 · x̃ = 16.8 > 16.5, so it is not in L(p2, y2). This is enough to guarantee
that O satisfies NCP under ≥. On the other hand, suppose we were to aggregate
goods 2 and 3 into a composite commodity, with the price of the composite being
3 (the average price of its constituent goods) at both observations 1 and 2. Then
the demand for the composite good at these observations are x̄1

2 = 9/3 = 3 and
x̄2

2 = 4.5/3 = 1.5. The corresponding two-good data set has
p1 = (2, 3), x1 = (1.5, 3), y1 = 12;
p2 = (4, 3), x2 = (3, 1.5) y2 = 16.5.

It is straightforward to check that this data set is not rationalizablebecause it violates
Afriat’s generalized axiom of revealed preference (or GARP, for short).

Example 6. (The Perturbation Index) Consider a researcher who observes
the consumer choosing the bundle xt from the budget set L(pt, yt). The data set
D = {(xt, L(pt, yt)}t∈T is rationalizable if there is an increasing utility function u
such that u(xt) ≥ u(x) for all x ∈ L(pt, yt). Afriat’s Theorem provides us with an
easily implementable way of checking if a data set is rationalizable by checking if
the generalized axiom of revealed preference (GARP) holds.

In empirical studies, it is common to find that data sets are not rationalizable,
and the revealed preference literature has developed various ways of measuring the
severity of the failure of rationality. Perhaps the most common approach is to use
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Figure 2: The data set {(x1, L1), (x2, L2)} is not rationalizable, but
{(A1, L1), (A2, L2)} (as depicted) is rationalizable.

the critical cost efficiency index due to Afriat (1973). Formally, this index is supE,
where E is set of numbers in [0, 1] such that e ∈ E if there is an increasing utility
function u with u(xt) ≥ u(x) for all x ∈ L(pt, eyt).23 This index measures the extent
to which alternatives have to be removed from the true budget L(pt, yt) before xt

is the best among the remaining bundles (namely, the bundles in L(pt, eyt)). A
rationalizable data set D will have an index of 1, with a lower index indicating a
more severe departure from rationality. One reason for the popularity of this index
is that it is easy to calculate and that is so because whether or not a given ê belongs
to E can be easily ascertained by a modified version of GARP.

A natural alternative method of measuring the severity of departures from ratio-
nality is to measure the extent to which observed choices in D = {(xt, L(pt, yt))}t∈T
have to be perturbed before a data set becomes rationalizable.24 Our extension
of Afriat’s Theorem (with Algorithm I for checking NCP) makes such a method
practicable. To fix ideas, suppose we allow for the optimal bundle to be in

At,κ = {x ∈ L(pt, yt) : pt · x = yt and |ptixi − ptixti| ≤ κyt for all i},
where κ ∈ [0, 1]. In other words, the optimal expenditure on good i is allowed to
deviate from ptix

t
i but not by more than κyt. This is illustrated in Figure 2, where the

‘original’ data set {(x1, L1), (x2, L2)} is not rationalizable, but {(A1, L1), (A2, L2)}

23 Papers that use this concept or a related version due to Varian (1990) include Harbaugh,
Krause and Berry (2001), Andreoni and Miller (2002), Choi et al. (2007, 2014), Fisman, Kariv and
Markovits (2007), Carvalho, Meier and Wang (2016), and Halevy, Persitz and Zrill (2018).

24 We think that there is room for multiple measures of rationality in empirical studies involving
revealed preference. If nothing else, it allows us to check whether empirical conclusions relating to
rationality are not overly sensitive to the particular index used.
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(as depicted) is rationalizable. More generally, we know how to check if Oκ ={
(At,κ, L(pt, yt))

}
t∈T

is ≥-rationalizable. A natural measure of the size of D’s
departure from full rationality is then provided by the perturbation index25

κ∗ := inf {κ : Oκ is ≥-rationalizable} .

In order to see how this index behaves on real data and also to ascertain that our
algorithm for checking NCP actually works, we calculate κ∗ for different subjects in
the budgetary experiment carried out by Choi et al. (2007). The results are reported
in the Online Appendix. (In this experiment there are 47 subjects who each make 50
choices from budgets of contingent consumption defined over two states.) Algorithm
I is used to determine if Oκ satisfies NCP under ≥, for different values of κ, in order
to pin down κ∗. We also use this algorithm to calculate the perturbation index in
the case where the rationalizing preference is required to extend ≥FSD (as defined
in Example 4).

Note that Algorithm I involves checking if Φ(T ′) = T ′ for nested subsets
of observations T ′, so the number of checks never exceeds the total number of
observations |T |. Furthermore, each check of Φ(T ′) = T ′ involves solving at most
|T ′|(|T ′|+ 1)/2 linear programs (as we explain in the Online Appendix). Essentially
for this reason, Algorithm I guarantees that we could ascertain whether Oκ is
≥-rationalizable or ≥FSD-rationalizable in polynomial time.26

6 Application: Multiple preferences
In this section, we investigate the observable restrictions of the multiple preferences
model, as presented in Aizerman and Malishevski (1981), Moulin (1985), and Salant
and Rubinstein (2008). In contrast with the single preference model, the choice
behavior of the agent is the result of choices from multiple preferences. Formally,
the agent has a set Π of strict preferences, and her choices form a set

FΠ(A) :=
{
x : x = max(A; �) for some �∈ Π

}
for each menu A. (4)

We can interpret the agent as a single individual who has different rationales when
choosing from A, with each choice being the best according to some rationale.

25 The idea of assessing a data set’s departure from rationalizability through the size of the
errors on observed choices is also found in Varian (1985), though that paper considers a different
model with a different revealed preference test; the Online Appendix explains this in greater detail.

26 This conclusion may be surprising to some since there is an alternative way of checking the
≥-rationalizability of Oκ via a relaxation of the Afriat inequalities, but that requires solving a
system of bilinear inequalities and such problems are known to be NP-hard. That approach is also
less satisfactory for a different reason: its applicability is narrower because there is not always a
known analog to the Afriat inequalities when the rationalizing preference is required to extend a
preorder (such as as ≥FSD) other than ≥. See the Online Appendix for further discussion.
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Alternatively, the agent may be a group of individuals (whose size and composition
are unknown to the observer), in which case FΠ(A) are those alternatives which are
optimal according to the preference of at least one member in the group.

We represent the observed choice behavior of the agent by a data set (Σ, f),
where Σ ⊆ X and f(A) denotes the set of alternatives which the observer has
observed the agent choosing from A ∈ Σ.27 We say that (Σ, f) is rationalizable by
multiple preferences (or multi-rationalizable, for short) if there is a set Π of strict
preferences for which f(A) = FΠ(A) for FΠ defined by (4) and all A ∈ Σ. An
axiomatic foundation for this model (in terms of intuitive properties on f when
Σ = X ) is already known (see Corollary 1 in the Online Appendix). Our main
objective here is not to provide further theoretical motivation for the model, but to
provide a practical way to test this model in the more realistic setting when Σ is a
sub-collection of X .

Example 7 (A data set that is not rationalizable by multiple preferences). Suppose
X = {x, y, z} and Σ = {{x, y}, {y, z}, {x, y, z}}. Let f be defined as follows:28

(1) f({x, y}) = x; (2) f({y, z}) = y; and (3) f({x, y, z}) = {x, z}.
To see that (Σ, f) is not multi-rationalizable, suppose to the contrary, that it is.
Then there exists a set Π of strict preferences such that f(A) = FΠ(A) for all A ∈ Σ.
The first observation f({x, y}) = x reveals that x � y for all �∈ Π, and the second
observation f({y, z}) = y reveals that y � z for all �∈ Π. By transitivity, it must
be that x � z for all �∈ Π, which contradicts with the third observation that
f({x, y, z}) = {x, z}.

In what follows, we identify two ways of characterizing those (Σ, f) that are
rationalizable by multiple preferences.
Characterization 1. This involves a straightforward application of the results
in Section 3. We denote by g(A) := A \ f(A) the set of alternatives in A that are
not chosen. Suppose that (Σ, f) can be rationalized by a set of strict preferences
Π. Then for each A ∈ Σ and x ∈ f(A), there exists a strict preference �∈ Π such
that x is optimal in A according to �. Furthermore, for any other set A′ ∈ Σ, the
optimal element according � must be contained in f(A′). It follows that, for each

27 We could think of f(A) as being observed to be chosen from A all at once, or we could
imagine an observer who sees the agent choosing from A several times, with f(A) being those
alternatives which were chosen from A on some occasion. Note that if the agent in question is a
group, then we are assuming the observer does not know the identity of the individual who picked
a given alternative in f(A).

28 We abuse the notation by suppressing the set delimiters, e.g., writing x rather than {x}.
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A ∈ Σ and x ∈ f(A), the set of menu preference pairs
MA,x := {(x,A \ x)} ∪

{
(f(A′), g(A′))

}
A′∈Σ, A′ 6=A

(5)
(where all menu preferences are strict) must be rationalizable by a strict preference.
Furthermore, this is also a sufficient condition for multi-rationalizability: indeed,
ifMA,x is rationalizable by some strict preference �A,x, then clearly the set Π =
{�A,x: A ∈ Σ, x ∈ f(A)} would rationalize (Σ, f) with multiple preferences. Since
for each A and x ∈ f(A), we can check ifMA,x is rationalizable by a strict preference
by checking if the partial congruence axiom holds (see Corollary 1), we obtain a
characterization of the multi-rationalizability of (Σ, f).
Characterization 2. Clearly, if (Σ, f) is rationalizable by multiple preferences
then the set of menu preference pairs

{
(f(A), g(A))

}
A∈Σ

is rationalizable by a strict
preference. By Corollary 1, the latter holds if and only if

∪A∈Σ′ f(A) 6⊆ ∪A∈Σ′ g(A) for all nonempty Σ′ ⊆ Σ (6)
or, in other words, that

(
∪A∈Σ′ f(A) \ ∪A∈Σ′ g(A)

)
is nonempty for all nonempty

Σ′ ⊆ Σ. The multi-rationalizability of (Σ, f) can be characterized by a strengthening
of condition (6). Specifically, we require the following:29

for any nonempty Σ′ ⊆ Σ and B ∈ Σ,(
∪A∈Σ′ f(A) \ ∪A∈Σ′ g(A)

)
⊆ B =⇒ f(B) ∩

(
∪A∈Σ′ g(A)

)
= ∅. (7)

To help us understand condition (7) better, note that it is a necessary condition
for (Σ, f) to be rationalizable by a set of strict preferences Π. Fix an arbitrary
nonempty Σ′ ⊆ Σ and B ∈ Σ. Observe that if x ∈ FΠ(∪A∈Σ′ A) then there must
exist A ∈ Σ′ such that x ∈ A; furthermore, whenever this occurs, x ∈ FΠ(A) = f(A)
and not in g(A). It follows that

FΠ (∪A∈Σ′ A) ⊆ ∪A∈Σ′ f(A) \ ∪A∈Σ′ g(A). (8)
If
(
∪A∈Σ′ f(A) \ ∪A∈Σ′ g(A)

)
⊆ B, then FΠ(∪A∈Σ′ A) ⊆ B. Since FΠ(B) = f(B)

consists of those elements in B that are optimal in B for some preference in Π,
f(B) ∩

[
(∪A∈Σ′ A) \ FΠ(∪A∈Σ′ A)

]
= ∅.

Furthermore (8) tells us that FΠ (∪A∈Σ′ A) ⊆ ∪A∈Σ′ A \ ∪A∈Σ′ g(A) and thus
∪A∈Σ′ g(A) ⊆

[
(∪A∈Σ′ A) \ FΠ(∪A∈Σ′ A)

]
.

We conclude that f(B) ∩
(
∪A∈Σ′ g(A)

)
= ∅.

The proof that (7) is also sufficient to guarantee the multi-rationalizability of

29 To see that this is a strengthening of (6), suppose that it is violated. Then there exists some
nonempty Σ′ ⊆ Σ such that ∪A∈Σ′ f(A) ⊆ ∪A∈Σ′ g(A). Fix an arbitrary nonempty set B ∈ Σ′.
Since ∪A∈Σ′ f(A) \ ∪A∈Σ′ g(A) = ∅ ⊆ B, it follows from (7) that f(B) ∩

(
∪A∈Σ′ g(A)

)
= ∅. We

have arrived at a contradiction, since f(B) ⊆ ∪A∈Σ′ f(A) ⊆ ∪A∈Σ′ g(A).
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(Σ, f) is more complicated and is obtained by showing that it implies the condition
in Characterization 1, i.e.,MA,x is rationalizable by a strict preference for all A ∈ Σ
and x ∈ f(A).30 The following result summarizes our discussion.

Theorem 6. The following statements on (Σ, f) are equivalent:

(1) (Σ, f) is rationalizable by multiple preferences.
(2) For each A ∈ Σ and x ∈ f(A), the set of menu preference pairs MA,x (as

defined by (5)) is rationalizable by a strict preference.
(3) (Σ, f) satisfies (7).

Condition (7) does not appear to be very promising as a practical way of testing
multi-rationalizability, since it involves checking the condition for all sub-collections
Σ′ and for all B ∈ Σ. In fact, that is not necessary. For each B ∈ Σ, we need only
check (7) for a strictly nested sequence of subcollections of Σ, beginning with Σ
itself. So (7) needs to be checked at most |Σ| times for each B: for Σ′ = Σ, some
Σ′ = Σ1 ⊆ Σ, some Σ′ = Σ2 ⊆ Σ1, and so on. Given that there are |Σ| different
values of B, the total number of checks of (7) does not exceed |Σ|2. The algorithm
below spells out how, for a given B, the sequence Σ1, Σ2 . . . could be obtained.

Algorithm II. Set Σ′ = Σ.
Start. Derive N(Σ′, B) := (∪A∈Σ′f(A)) \ ((∪A∈Σ′g(A)) ∪B). Consider the

following four mutually exclusive cases:
(a). Σ′ = ∅.

Stop and output B satisfies (7) for all Σ′ ⊆ Σ.
(b). Σ′ 6= ∅ and N(Σ′, B) 6= ∅.

Go to Start with Σ′ = {A ∈ Σ′ : f(A) ∩N(Σ′, B) = ∅}.
(c). Σ′ 6= ∅, N(Σ′, B) = ∅ and f(B) ∩ (∪A∈Σ′g(A)) = ∅.

Stop and output B satisfies (7) for all Σ′ ⊆ Σ.
(d). Σ′ 6= ∅, N(Σ′, B) = ∅ and f(B) ∩ (∪A∈Σ′g(A)) 6= ∅.

Stop and output B fails (7) for some Σ′ ⊆ Σ.

Proposition 2. For a given B ∈ Σ, Algorithm II verifies if (7) holds for all Σ′ ⊆ Σ.

Theorem 6 holds for any data set (Σ, f). In the special case of complete data,
that is, when Σ = X , Aizerman and Malishevski (1981) provides an axiomatic
characterization. We discuss its connection with our result in the Online Appendix.

30 Moulin (1985) uses a similar proof strategy when proving that Aizerman and Chernoff axioms
characterize multi-rationalizability in the case of complete data, i.e., when Σ = X (see Corollary 1
in the Online Appendix). In other words, with complete data, those axioms guarantee thatMA,x

is rationalizable by a strict preference for all A ∈ Σ and x ∈ f(A).

29



7 Application: Minimax regret
The minimax regret criterion was first suggested in Savage (1951) to model an agent
who anticipates regret and chooses to minimize the worst-case regret that could
occur. In this section, we investigate the observable restrictions of this model by
applying the results of Section 3.

Let X be a finite nonempty set of alternatives. The utility of an alternative x
depends on the realization of the state; we denote the state space by U , a typical
element in this space by u, and the utility of the alternative x in state u by u(x). The
regret of choosing x relative to y is u(y)− u(x) if the state is u and the worst-case
regret of choosing x relative to y is

φU(x, y) := max
u∈U

{
u(y)− u(x)

}
.

In a menu M ⊆ X, the worst-case regret of choosing x is thus maxy∈M φU(x, y).
The agent who uses the minimax regret decision criterion chooses those alternatives
that lead to the lowest worst-case regret, i.e., at the menu M , the agent chooses

RU(M) := arg minx∈M
{

max
y∈M

φU(x, y)
}
.

As in the previous section, we represent the observed choice behavior of an agent
by (Σ, f), where Σ ⊆ X and f(M) is the choice of the agent in M ∈ Σ. We say that
(Σ, f) is rationalizable by the minimax regret model if there exists a finite set U of
utility functions such that

f(M) = RU(M) for all M ∈ Σ. (9)
Notice that following Kreps (1979) and Dekel, Lipman and Rustichini (2001) (see
also Dekel et al. (2007)) the set of states/utility functions U is not known to the
observer and is something that has to be recovered as part of the rationalization of
(Σ, f). This is the key difference between our result (Theorem 7 below) and those
results which axiomatize the minimax regret model under the assumption that the
set of states is known and the alternatives are acts mapping states to outcomes
which are also known to the observer.31

Given the flexibility available in constructing the set of utility functions, readers
might wonder whether the minimax model has any observable restrictions in our
setup. To get this out of the way, we present a data set (Σ, f) that is not rationalizable

31 Milnor (1954) and Stoye (2011) axiomatize a model where the agent minimizes regret, with
the regret associated with an act x in menu M given by maxy∈M {maxs∈S Ev(y(s))−Ev(x(s))}.
(In this formulation, an act x maps each state s (in the set S) to an objective lottery x(s) in an
outcome space and Ev(x(s)) is the expected utility of this lottery (with Bernoulli index v).) This is
a case of our model if we set U = {Ev(·, s)}s∈S . Conversely, the elements in X in our formulation
could be formulated as acts by letting S = U , the outcome space be R, identifying x ∈ X with the
act given by x(u) = u(x), and letting the Bernoulli index be the identity function.
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under the minimax regret model.

Example 8 (A data set that is not rationalizable under the minimax regret model).
Let X = {x, y, z, w}, with (Σ, f) consisting of the following observations: f(X) = x,
f(X \ z) = y, and f(X \ w) = y.

Suppose that (Σ, f) is rationalizable by the minimax regret model. Then since
f(X) = x and f(X \ z) = y, it must be the case that

max{φU(y, z), φU(y, w), φU(y, x)} = φU(y, z)
and, in particular, φU (y, z) > φU (y, w). Similarly, since f(X) = x and f(X \w) = y,
we obtain φU(y, w) > φU(y, z), which is a contradiction.

Our objective is to show how we can check the rationalizability of (Σ, f) by
the minimax regret model by checking the rationalizability of an appropriately
constructed data set of menu preference pairs. To that end, we first make the
observation that given any finite set U of utility functions defined on X,

RU(M) = arg minx∈M
{

max
y∈M\x

φU(x, y)
}

for all M ∈ Σ; (10)

in other words, when considering the regret of choosing x from the menu M , one
can omit comparing x with itself. We leave the reader to verify it. Given this
observation, the rationalizability of (Σ, f) by the minimax regret model is equivalent
to the existence of a finite set U of utility functions such that, for all M ∈ Σ,

max
y∈M\x

φU(x, y) > max
y∈M\x∗

φU(x∗, y) if x ∈M \ f(M), x∗ ∈ f(M), and (11)

max
y∈M\x∗

φU(x∗, y) = max
y∈M\x∗∗

φU(x∗∗, y) if x∗, x∗∗ ∈ f(M). (12)

Given (Σ, f), for eachM ∈ Σ and x ∈M with x 6= f(M), let Āx,M = x× (M \x).
We define the set of menu preference pairs Ō = ŌS ∪ ŌW , where

ŌS := {(Āx,M , Āx∗,M) : x ∈M \ f(M), x∗ ∈ f(M) and M ∈ Σ}, (13)

ŌW := {(Āx∗,M , Āx∗∗,M) : x∗, x∗∗ ∈M \ f(M), and M ∈ Σ}. (14)
Notice that if (Σ, f) is rationalizable by a minimax regret model, then Ō can be
rationalized by a preference on X ×X. This is clear since (11) and (12) guarantees
that φU rationalizes Ō. Conversely, if Ō is rationalizable, then there is a utility
function W : X̄ → R, where X̄ = {(x, x′) ∈ X ×X : x 6= x′}, such that32

f(M) = arg min
x∈M

{
max
y∈M\x

W (x, y)
}

for all M ∈ Σ.

What is less obvious is that one could find a set of utility functions U , such that the
preference generated by W has a representation of the form φU , but that turns out
to be true.

32 Bear in mind we assume that X is finite, so rationalization by a preference coincides with
rationalization by a utility function.
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It fact, it is possible to simplify the test by checking the rationalizability of a
smaller set of menu preference pairs Ô = ÔS ∪ ŌW where
ÔS = {(Āx,M , Āx∗,M) : x ∈ (M \ f(M)) ∩ (∪D∈Σf(D)), x∗ ∈ f(M) and M ∈ Σ}.

So Ô only contains those pairs (Āx,M , B̄x∗,M) such that x is chosen in some menu
D ∈ Σ. When the number of elements in ∪D∈ΣD is large compared to ∪D∈Σf(D),
the number of observations in Ô will be much smaller than that in Ō. In the
important special case where f(M) is unique for all M ∈ Σ, the set ŌW is empty
and Ô = ÔS will have no more than |Σ|2 observations.

Theorem 7. (Σ, f) is rationalizable by the minimax regret model if and only if the
corresponding set of menu preference pairs Ô is rationalizable.

Recall that the rationalizability of Ô is characterized by NCP and this property
could be checked using Algorithm I (see Section 3.3). We now revisit Example 8 to
illustrate how Theorem 7 applies in that case.

Example 8 (Continued). LetM ′ = X\z andM ′′ = X\w. In this case, ∪D∈Σf(D) =
{x, y}. The set ŌW is empty and Ô = ÔS consists of the following menu preference
pairs (where the menu on the left is strictly preferred to the one on the right).

Āy,X =
{

(y, x), (y, z), (y, w)
}
, Āx,X =

{
(x, y), (x, z), (x,w)

}
;

Āx,M ′ =
{

(x, y), (x,w)
}
, Āy,M ′ =

{
(y, x), (y, w)

}
;

Āx,M ′′ =
{

(x, y), (x, z)
}
, Āy,M ′′ =

{
(y, x), (y, z)

}
.

By Corollary 1, Ô is not rationalizable since(
Āy,X ∪ Āx,M ′ ∪ Āx,M ′′

)
⊆
(
Āx,X ∪ Āy,M ′ ∪ Āy,M ′′

)
.

By Theorem 7, (Σ, f) is not rationalizable under the minimax regret model.

Appendix
Proof of Theorem 1. We have argued in the main text that Statement (1) implies
Statement (2). In what follows, we show that Statement (2) implies Statement (3)
and that Statement (3) implies Statement (1).

Statement (2) ⇒ Statement (3): Suppose thatM satisfies NCP under D. We
shall explicitly provide a way of selecting xt in At for each t ∈ T such that {xt}t∈T
is a no-cycling selection under D.

Denote by E(T ′) the set of alternatives that are revealed to be dominated through
the procedure of iterated exclusion of dominated observations, i.e.,

E(T ′) := B (T ′)↓↓
⋃
B ((T ′ ∩ S) ∪ Φ(T ′))↓ .
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SinceM satisfies NCP under D, for any nonempty T ′ ⊆ T , Φ(T ′) is strict subset of
T ′, which implies that A (T ′) \ E(T ′) 6= ∅.

Let T1 := T and S1 := A(T1) \ E(T1). We proceed by induction. Suppose that
we have constructed Tk and Sk for some k ≥ 1. If Tk 6= ∅, construct Tk+1 and Sk+1:

Tk+1 := Φ(Tk) = {t ∈ Tk : At ⊆ E(Tk)} and Sk+1 := A(Tk+1) \ E(Tk+1).
Since M satisfies NCP under D, if Tk 6= ∅, then Tk+1 = Φ(Tk) ( TK and Sk =
A(Tk) \ E(Tk) 6= ∅. The construction stops when Tk∗ 6= ∅ and Tk∗+1 = ∅ for some k∗.

We are now ready to select xt in At for each t ∈ T such that {xt}t∈T is a no-cycling
selection under D. For each 1 ≤ k ≤ k∗, let Vk := Tk \ Tk+1 denote the collection of
observations that are eliminated when constructing Tk+1 from Tk. Clearly, {Vk}k

∗
k=1

is a partition of T . By definition, for each k and each t ∈ Vk = Tk \ Tk+1, we have
At \ E(Tk) 6= ∅ and hence At ∩ Sk = At ∩ (A(Tk) \ E(Tk)) 6= ∅.

For each k and each t ∈ Vk = Tk \ Tk+1, we pick an arbitrary xt ∈ At ∩ Sk.
We proceed to verify that the revealed preference relations defined on {xt}t∈T
obey the no-cycling property. Let k(t) be the corresponding index k such that
t ∈ Vk. It suffices to show that (1) xtRxt′ implies that k(t) ≤ k(t′); and (2)
xtPxt

′ implies that k(t) < k(t′). Suppose that xtRxt′ but k(t) > k(t′). Then
t ∈ Φ(Tk(t′)) due to the construction of {Vk}k

∗
k=1. It follows that At ⊆ E(Tk(t′)) and

Bt↓ ⊆ E(Tk(t′)). Since xtRxt
′ , we have xt′ ∈ Bt↓ ⊆ E(Tk(t′)), which contradicts with

xt
′ ∈ Sk(t′) = A(Tk(t′)) \ E(Tk(t′)). Hence, xtRxt

′ implies k(t) ≤ k(t′). Suppose that
xtPxt

′ but k(t) ≥ k(t′). If k(t) > k(t′), then we have the same contradiction as
argued above. If k(t) = k(t′) = k for some k, then both xt and xt

′ belong to Sk.
Since Sk = A(Tk) \ E(Tk) and B(Tk)↓↓ ∪B(Tk ∩ S)↓ ⊆ E(Tk), we have

xt, xt
′ ∈ Sk ⊆ A(Tk) \

(
B(Tk)↓↓ ∪B(Tk ∩ S)↓

)
.

But this is impossible since xtPxt′ implies that either xt′ ∈ Bt↓↓ or t ∈ S and
xt
′ ∈ Bt↓. Hence, xtPxt′ implies k(t) < k(t′).
Statement (3) ⇒ Statement (1): Suppose thatM admits a no-cycling selection

under D, {xt}t∈T . Let R∗ be the binary relation on X where x̂ R∗ ŷ if there is t ∈ T
such that x̂ = xt and ŷ ∈ Bt. Let %∗ be the transitive closure of R∗ ∪ D. By the
Szpilrajn’s extension theorem (see Szpilrajn (1930)), %∗ admits an extension %.33

We claim that the preference % has two properties: (1) it rationalizes the data
set and (2) it extends D. It follows from the construction that xt % Bt for all
t ∈ T . Thus, to show (1), we only need to show that xt � Bt for t ∈ S. Suppose
to the contrary that for some t′ ∈ S, xt′ ∼ y for some y ∈ Bt′ . Given that %

33 This means that there is a complete preorder % such that x % y if x %∗ y and x � y if x �∗ y
where � is the asymmetric part of % and �∗ the asymmetric part of %∗.
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extends %∗, this can only occur if y %∗ xt
′ . This means there is t′′ ∈ T such that

y D xt
′′
%∗ xt

′ . Therefore we obtain xt
′
P xt

′′
%∗ xt

′ , which is excluded by the
no-cycling property. This completes the proof of (1). To show (2), note that x % y

if x D y by construction, so it remains to show that x � y if xB y. Suppose instead
we have xB y but x ∼ y. This can only occur if y %∗ x. Since D is a preorder, if
x B y and y %∗ x, there must be t′, t′′ ∈ T such that y D xt

′′
%∗ xt

′
D x. So we

obtain xt′ D x B y D xt
′′ , which means that xt′ P xt′′ , which is incompatible with

xt
′′
% xt

′ , given the no-cycling property.

Proof of Proposition 1. By Theorem 1,M is D-rationalizable if and only if it
satisfies NCP under D. Thus, it suffices to show thatM satisfies NCP under D if
and only if Algorithm I outputs D-Rationalizable.

“Only if”: IfM satisfies NCP under D, then Φ(T ′) 6= T ′ for any nonempty
T ′ ⊆ T . Thus, Case (c) never occurs when we run Algorithm I on this data set.
Furthermore, T k is strictly decreasing in k in the set inclusion sense, and T k∗ = ∅
for some k∗. Therefore, Algorithm I outputs D-Rationalizable.

“If”: Conversely, suppose that Algorithm I outputs D-Rationalizable. We then
have a sequence of subsets of T , {T 0, T 1, . . . , T k

∗}, where T k = Φ(T k−1) ( T k−1 for
all k = 1, 2, . . . , k∗ and T k∗ = ∅. For any nonempty T ′ ⊆ T , there exists some k such
that T ′ ⊆ T k and T ′ 6⊆ T k+1. It is straightforward to verify that the operator Φ(·) is
monotonically increasing in the set inclusion sense. As such, Φ(T ′) ⊆ Φ(T k) = T k+1.
Since T ′ 6⊆ T k+1, we have Φ(T ′) 6= T ′. Thus, the data set satisfies NCP under D.

Proof of Theorem 2. By Theorem 1, Statements (1) and (2) are equivalent, and
obviously (3) implies (1). So it remains to show that (2) implies (3).

To the original data set M we add the observations
{

(Aat, Aat)
}
t∈T

and{
(Bbt, Bbt)

}
t∈T

, where Aat = At and Bbt = Bt for each t ∈ T . Consider the
augmented data set

M∗ =
{

(At, Bt)
}
t∈T

⋃{
(Aat, Aat)

}
t∈T

⋃{
(Bbt, Bbt)

}
t∈T

,

where all the added observations are considered weak preferences. Notice thatM is
nicely rationalizable if and only ifM∗ is rationalizable.

We denote a typical observation ofM∗ by z; the observation z may be in T , in
aT := {a1, a2, . . . , at, . . .}, or in bT := {b1, b2, . . . , bt, . . .}. Let Z := T ∪ aT ∪ bT .
Suppose that M =

{
(At, Bt)

}
t∈T

satisfies NCP, i.e., for any T ′ ⊆ T , the set of
dominated observations at T ′, Φ(T ′), satisfies Φ(T ′) 6= T ′. We claim that this
implies thatM∗ also satisfies NCP, which will guarantee (by Theorem 1) thatM∗

is rationalizable.
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Given Z ′, a nonempty subset of Z, we denote its dominated observations by
Φ∗(Z ′). We need to show that Φ∗(Z ′) 6= Z ′. Suppose that Z ′ ∩ S = ∅, where
S ⊆ T is the set of observations with strict preferences. Then Φ∗(Z ′) = ∅ and so
obviously Φ∗(Z ′) 6= Z ′. Now suppose that Z ′ ∩ S is nonempty, which means that
Z ′ ∩ T is also nonempty. SinceM satisfies NCP, (Z ′ ∩ T ) \ Φ(Z ′ ∩ T ) is nonempty.
It is straightforward to check in this case that if t̂ ∈ (Z ′ ∩ T ) \ Φ(Z ′ ∩ T ) then
t̂ ∈ Z ′ \ Φ∗(Z ′). Therefore, Z ′ \ Φ∗(Z ′) is nonempty since (Z ′ ∩ T ) \ Φ(Z ′ ∩ T ) is
nonempty. We conclude thatM∗ satisfies NCP.

Proof of Theorem 3. The equivalence of Statements (1) and (2) follows from
Theorem 1 and obviously (3) implies (1). It suffices to show that Statement (2)
implies (3). By Theorem 1, sinceM satisfies NCP under D, it admits a no-cycling
selection {xt}t∈T underD. From the proof of Theorem 1, we know that any preference
that extends tran(R∗∪ D) (the transitive closure of R∗∪ D) will rationalize the data
and extend D. It remains to show that there is a preference representable by a
continuous utility function that extends tran(R∗∪ D). By Levin’s Theorem, such
an extension exists so long as tran(R∗∪ D) is a closed preorder. That is indeed the
case (see the proof of this claim contained in the proof of Theorem 2 in Nishimura,
Ok and Quah (2017)) and it follows from the compactness of Bt for all t ∈ T and
the finite number of observations.

Proof of Theorem 4. Statement (3) obviously implies (1). To show that (1)
implies (2), suppose thatM is rationalized by a locally nonsatiated preference %

and xt ∈ L(pt) satisfies xt % L(qt) for all t ∈ T and xt � L(qt) for all t ∈ S. Let
x̂ = max({xt}t∈T ′ ; %). Denoting Lp(T ′) = ⋃

t∈T ′ L(pt) and Lq(T ′) in an analogous
fashion, we note that Lp(T ′) cannot be covered by Lq(T ′)↓↓

⋃
Lq(T ′ ∩ S)↓ since the

former contains x̂ and the latter does not. Indeed, x̂ � Lq(T ′ ∩ S)↓ = Lq(T ′ ∩ S),
and so x̂ is not in Lq(T ′ ∩ S). Nor can x̂ be in Lq(T ′)↓↓ = Lq(T ′)o (the interior of
Lq(T ′)) because x̂ % Lq(T ′) and the preference is locally nonsatiated. Taking it one
step further, we know that x̂ is not in Lq(T ′)o

⋃
Lq((T ′ ∩ S) ∪ Φ1(T ′)), where

Φ1(T ′) :=
{
t ∈ T ′ : L(pt) ⊆ Lq(T ′)↓↓

⋃
Lq(T ′ ∩ S)↓

}
=

{
t ∈ T ′ : L(pt) ⊆ Lq(T ′)o

⋃
Lq(T ′ ∩ S)

}
.

This is because x̂ � Lq((T ′ ∩ S) ∪ Φ1(T ′)). Repeating this argument, we eventually
conclude that x̂ is in A(T ′) but not in Lq(T ′)o

⋃
Lq((T ′ ∩ S) ∪ Φ(T ′)) and hence

Φ(T ′) 6= T ′.
To show that (2) implies (3), note that Theorem 3 guarantees that there is a

strictly increasing and continuous utility function u : Rn
+ → R that rationalizes
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M. So it suffices to show that there is a utility function û that also rationalizes
M, which has the additional property of concavity. Each budget, L(pt) is compact
and so it has an optimum under u which we denote by xt (if there are multiple
optimal alternatives we may pick any one of them); similarly we denote the optimum
bundle in L(qt) by yt. Since u is strictly increasing, pt · x̄t = qt · yt = 1, i.e., the
optimal bundle is on the budget plane and not just the budget set. Let % denote the
preference (i.e, the complete preorder) over {xt}t∈T ∪ {yt}t∈T induced by u. Since it
is generated by u, the notional data set N = {(xt, pt)}t∈T ∪ {(yt, qt)}t∈T is cyclically
consistent in the sense of Afriat (1967) (equivalently, obeys the generalized axiom of
revealed preference in the sense of Varian (1982)). The preference % is a completion
of the revealed preference relations generated by N and defined on {xt}t∈T ∪{yt}t∈T ;
by Afriat’s Theorem, there is a strictly increasing, continuous and concave utility
function û such that û(xt) ≥ û(x) for all x ∈ L(pt), û(yt) ≥ û(x) for all x ∈ L(qt),
and û(xt) ≥ (>)u(yt) if xt % (�) yt (where � is the asymmetric part of %). Thus
û also rationalizesM.

Proof of Corollary 2. Obviously Statement (3) implies Statement (1), so we only
show that Statement (1) implies Statement (2) and the latter implies Statement (3).

To see that Statement (1) implies (2), supposeM is rationalized by a preference
%. Let T ′ ⊆ T . For each t ∈ T ′, there is xt ∈ L(pt) such that xt � L(qt). If we
choose t∗ ∈ T ′ such that xt∗ % xt for all t ∈ T ′, then xt∗ � x for all x ∈ ⋃s∈T ′ L(qs).
Let q ∈ conv

(
{qs}s∈T ′

)
. For any x such that q · x ≤ 1, there must exist qs, with

s ∈ T ′, such that x · qs ≤ 1; in other words x ∈ L(qs). Thus xt∗ � L(q) and so
xt
∗
/∈ L(q), which implies that pt∗ 6≥ q.34

We know from Theorem 4 that to show that Statement (2) implies Statement (3),
it suffices to show that NCP holds; since T = S, this simply requires ⋃t′∈T ′ L(pt′) 6⊆⋃
t′∈T ′ L(qt′) for any T ′ ⊆ T . Given such a T ′, let P :=

{
p ∈ Rn

+ : p ≥ q for some q ∈
conv

(
{qs}s∈T ′

)}
. Clearly, P is closed and convex. Statement (2) guarantees that

there is t∗ ∈ T ′ such that pt∗ /∈ P . By the separating hyperplane theorem, there
exists a vector r ∈ Rn and a number b where r 6= 0 such that pt∗ · r = b < p · r for
any p ∈ P . It is easy to verify that r ≥ 0. Since r 6= 0, we have b = pt

∗ · r > 0. Let
r′ = r/b. We have pt∗ · r′ = 1 < p · r′ for all p ∈ P . In words, r′ is affordable at the
price vector pt∗ but not under any qs. Therefore, L(pt∗) 6⊆ ⋃s∈T ′ L(qs).

Proof of Theorem 5. We skip the proof that Statement (1) implies (2), which
is straightforward and similar to the argument given in Section 4 for the claim

34 Notice that unlike Theorem 4, we do not require the preference to be locally non-satiated in
Statement (1), because all the menu preferences in the current setting are strict.
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that (1) implies (2) in Theorem 4. It is also obvious that (3) implies (1). So it
remains for us to show that (2) implies (3). An appeal to Theorem 3 guarantees that
there is xt (for each t ∈ T ) and a strictly increasing and continuous utility function
ũ : Rn

+ → R such that ũ(xt) ≥ ũ(x) for all x ∈ L(pt). Therefore the notional data
set

{
(xt, pt)

}
t∈T

must satisfy cyclical consistency (equivalently GARP). By Afriat’s
Theorem, there is a strictly increasing, continuous, and concave utility function u
such that u(xt) ≥ u(x) for all x ∈ L(pt) for all t ∈ T .

Proof of Theorem 6. We have already shown that Statements (1) and (2) are
equivalent, and that Statement (1) implies Statement (3). It remains to show that
Statement (3) implies Statement (2). Suppose, contrary to Statement (2), that
there is B ∈ Σ and x ∈ f(B), such that MB,x is not rationalizable by a strict
preference. Abusing notation somewhat, we shall identify the observations inMB,x

with the elements of Σ. By Corollary 1, NCP (2) is violated for some subset Σ′ of
the observations inMB,x. If B /∈ Σ′, then we have ∪A∈Σ′ f(A) ⊆ ∪A∈Σ′ g(A) but
this is impossible because it is excluded by (7) (see footnote 29). So we consider the
case where B ∈ Σ′ and let Σ′′ = Σ′ \B. Since (2) is violated,

{x} ∪
(
∪A∈Σ′′ f(A)

)
⊆ (B \ x) ∪

(
∪A∈Σ′′ g(A)

)
. (15)

However, by (7) again, we have ∪A∈Σ′′ f(A) 6⊆ ∪A∈Σ′′ g(A). This implies that
(∪A∈Σ′′ f(A) \ ∪A∈Σ′′ g(A)) ⊆ B and so f(B) ∩ (∪A∈Σ′′ g(A)) = ∅ (by (7)). In
particular, x /∈ ∪A∈Σ′′ g(A), which means that (15) is impossible, a contradiction.

Proof of Proposition 2. We first make three easy-to-check observations. (i)
N(Σ′, B) = ∅ if and only if (∪A∈Σ′f(A))\(∪A∈Σ′g(A)) ⊆ B. (ii) If N(Σ′, B) = ∅ and
N(Σ′′, B) = ∅, then N(Σ′ ∪ Σ′′, B) = ∅; this guarantees that there is Σ∗ (possibly
empty) such that N(Σ∗, B) = ∅ and if N(Σ′, B) = ∅ then Σ′ ⊆ Σ∗. It follows that
condition (7) need only be checked for Σ∗. (iii) Suppose that for some Σ′, we find
that N(Σ′, B) is nonempty and, for some Ā ∈ Σ′, f(Ā) ∩ N(Σ′, B) is nonempty.
Then Ā /∈ Σ′′ if Σ′′ ⊆ Σ′ and N(Σ′′, B) = ∅.

It follows from these observations, that if N(Σ, B) is nonempty (so Σ∗ 6= Σ), then
Σ1 = {A ∈ Σ : f(A) ∩N(Σ, B) = ∅} is a strict subset of Σ that (from observation
(iii) above) contains Σ∗. If N(Σ1, B) is nonempty, then the algorithm calculates (in
step (b)) Σ2 = {A ∈ Σ1 : f(A) ∩N(Σ1, B) = ∅}. Again, Σ2 is a strict subset of Σ1

and contains Σ∗. Eventually, for some m, we have N(Σm, B) = ∅, at which point we
conclude that Σm = Σ∗. The algorithm then requires us to check if (7) holds.

Proof of Theorem 7. We have already shown that if (Σ, f) is rationalizable by
the minimax regret model then Ô is rationalizable. Turning to the converse, we
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first observe that if Ô is rationalizable then its superset Ō is also rationalizable.
Indeed, let T ′ be a subset of observations in Ō and suppose it contains an observation
(Āx̃,M , Āx∗,M ) where x̃ /∈ ∪D∈Σf(D). Notice that this observation cannot be in Φ(T ′),
the set of revealed dominated observations, which implies that T ′\Φ(T ′) is nonempty.
So in checking whether NCP holds for Ō, we need only consider those subsets of
observations T ′ which do not contain observations of that type. Thus, Ō satisfies
NCP if Ô satisfies NCP; equivalently, Ō is rationalizable if Ô is rationalizable.

Now suppose Ō is rationalized by the preference % on X̄. It remains for us to
show that, for any preference relation % defined over X̄, there exists a finite set U
of utility functions such that for any (x, y), (z, w) ∈ X̄, φU(x, y) ≥ φU(z, w) if and
only if (x, y) % (z, w). Since X̄ is finite, we can construct a function β : X̄ → (1, 2)
such that β(x, y) ≥ β(z, w) if and only if (x, y) % (z, w). We now construct a finite
set of utility functions U = {ux,y}(x,y)∈X̄ , where the utility functions are indexed by
(x, y) ∈ X̄. For each (x, y) ∈ X̄, let (1) ux,y(z) = 0 if z = x, (2) ux,y(z) = β(x, y) if
z = y, and (3) ux,y(z) = 1

2β(x, y) otherwise.
Obviously, ux,y(y)− ux,y(x) = β(x, y) > 1. We claim that uz,w(y)− uz,w(x) < 1

if (z, w) 6= (x, y). First consider the case in which w 6= y. It follows from the
construction of the utility functions and the β function that uz,w(y) − uz,w(x) ≤
uz,w(y) ≤ 1

2β(z, w) < 1. Next, we consider the case in which w = y. Since (z, w) 6=
(x, y), we have z 6= x. By the construction of the utility functions, uz,w(y)−uz,w(x) =
β(z, w)− 1

2β(z, w) = 1
2β(z, w) < 1. Therefore, we can conclude that

φU(x, y) = max
u∈U

{
u(y)− u(x)

}
= ux,y(y)− ux,y(x) = β(x, y).

We have constructed a finite set U of utility functions such that for any (x, y), (z, w) ∈
X̄, φU(x, y) ≥ φU(z, w) if and only if β(x, y) ≥ β(z, w). (Σ, f) can thus be
rationalized by the minimax regret model.
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Online Appendix
to

“A Theory of Revealed Indirect Preference”

Gaoji Hu Jiangtao Li John K.-H. Quah Rui Tang

This Online Appendix is divided into five sections. Section A discusses further results
on the never-covered property and extends Corollary 2 in the main paper to the case
where menu preferences are allowed to be weak. Section B discusses the connection
between our work and that of de Clippel and Rozen (2021) on upper contour
rationalization. Section C gives a detailed description of how Algorithm I (which
checks for the never-covered property) can be used to calculate the perturbation
index. We then use this algorithm to calculate the perturbation index for each
subject in the experiment carried out by Choi et al. (2007); the results are reported in
Section D. Section E discusses the axiomatic characterization of multiple preferences
by Aizerman and Malishevski (1981) and its connection to our Theorem 6.

A More results on the never-covered property
By definition, a data set of menu preference pairsM =

{
(At, Bt)

}
t∈T

satisfies the
never-covered property under D if, for any nonempty T ′ ⊆ T , Φ(T ′) is a strict
subset of T ′. Obviously, this means that there exists some Ψ ( T ′ such that for
any t ∈ T ′ \Ψ, At 6⊆ B(T ′)↓↓⋃B((T ′ ∩ S) ∪Ψ)↓. To see this, we could simply set
Ψ = Φ(T ′). In fact, as the next proposition states formally, we could characterize
Φ(T ′) as the smallest set of observations in T ′ with this property.

Proposition A1. Consider the data setM =
{

(At, Bt)
}
t∈T

.

(1) For any nonempty T ′ ⊆ T , if there exists Ψ ( T ′ such that for any t ∈ T ′ \Ψ,

At 6⊆ B(T ′)↓↓
⋃
B((T ′ ∩ S) ∪Ψ)↓,

then Φ(T ′) ⊆ Ψ.
(2) If for any nonempty T ′ ⊆ T , there exists Ψ ( T ′ such that for any t ∈ T ′ \Ψ,

At 6⊆ B(T ′)↓↓
⋃
B((T ′ ∩ S) ∪Ψ)↓,

thenM satisfies the never-covered property under D.

Proof. We prove the first statement below. The second statement is an immediate
implication of the first statement. Fix a nonempty T ′ ⊆ T and Ψ ( T ′ such that for
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any t ∈ T ′ \Ψ,
At 6⊆ B(T ′)↓↓

⋃
B((T ′ ∩ S) ∪Ψ)↓.

To show that Φ(T ′) ⊆ Ψ, we proceed by induction. Obviously,

Φ0(T ′) = ∅ ⊆ Ψ,

Φ1(T ′) =
{
t ∈ T ′ : At ⊆ B(T ′)↓↓

⋃
B(T ′ ∩ S)↓

}
⊆ Ψ.

Suppose that we have Φm(T ′) ⊆ Ψ for some m. It follows that

B(T ′)↓↓
⋃
B((T ′ ∩ S) ∪ Φm(T ′))↓ ⊆ B(T ′)↓↓

⋃
B((T ′ ∩ S) ∪Ψ)↓.

Thus, t ∈ T ′ \Ψ implies t ∈ T ′ \Φm+1(T ′), which further implies that Φm+1(T ′) ⊆ Ψ.
By induction, we obtain Φ(T ′) ⊆ Ψ.

In Corollary 2 of the main paper, we considered the case where a data set consists
of strict preferences between linear budget sets, i.e.,M =

{
(L(pt), L(qt))

}
t∈T

where
T = S. In this case, we showed that the never-covered property, which guarantees
the rationalizability of M by a preference on Rn

+, can be equivalently stated as
the following property which is closer to the quasi-convex property of the indirect
utility function: for any nonempty T ′ ⊆ T , there is t∗ ∈ T ′ such that pt∗ 6≥ q for
any q ∈ conv

(
{qs}s∈T ′

)
.

The next result applies Proposition A1 to extend Corollary 2 in the main paper
to the case in which weak preference between prices are observed, i.e., where W can
be nonempty.

Proposition A2. Consider a set of preferences over budget setsM =
{

(L(pt), L(qt))
}
t∈T

.
The data setM is rationalizable by a strictly increasing, continuous, and concave
utility function u : Rn

+ → R if and only if the following property holds: for any
nonempty T ′ ⊆ T ,

there exists Φ ( T ′ and ε� 0 such that p 6≥ q whenever p� pt for some
t ∈ T ′ \ Φ and q ∈ conv

(
{qs}s∈T ′

⋃{qr − ε}r∈Φ∪(T ′∩S)
)
.1

Proof. By Theorem 4 of the main paper, it suffices to show thatM satisfies the
never-covered property under ≥ if and only if the property in Proposition A2
holds. The never-covered property under ≥ requires that for any nonempty T ′ ⊆ T ,

1 When T = S, the characterizing condition in this corollary reduces to that in Corollary 2 in
the main paper. To see this, note that if T = S, then the condition in Proposition A2 is equivalent
to saying that for any nonempty T ′ ⊆ T , there exists t ∈ T ′ and ε� 0 such that for any p� pt

and q ∈ conv
(
{qs}s∈T ′

⋃
{qr − ε}r∈T ′

)
, p 6≥ q. By continuity, this is equivalent to the condition in

Corollary 2.

2



T ′ \ Φ(T ′) 6= ∅. By the definition of Φ(T ′), if t ∈ T ′ \ Φ(T ′), then

L(pt) 6⊆
 ⋃
t′∈T ′

L(qt′)o
⋃ ⋃

t′∈(T ′∩S)∪Φ(T ′)
L(qt′)

 .
We first prove the following lemma.

Lemma 1. L(p) 6⊆
(⋃n

s=1 L(qs)
)⋃ (⋃m

r=1 L(qr)o
)
if and only if there exists some

ε� 0 such that for any p̂� p, L(p̂) 6⊆
(⋃n

s=1 L(qs − ε)
)⋃ (⋃m

r=1 L(qr)
)
.

Proof. (The only if-part) Since L(p) 6⊆
(⋃n

s=1 L(qs)
)⋃ (⋃m

r=1 L(qr)o
)
, there exists

some x ∈ L(p) such that x /∈
(⋃n

s=1 L(qs)
)⋃ (⋃m

r=1 L(qr)o
)
. Fix such an x. Since

x ∈ L(p), for any p̂ � p, there exists some δ � 0 such that x + δ ∈ L(p̂). Fix
such a δ. Since x /∈ ⋃ns=1 L(qs), there exists some sufficiently small ε � 0 such
that x /∈ ⋃ns=1 L(qs − ε), which further implies that x + δ /∈ ⋃ns=1 L(qs − ε). Since
x /∈ ⋃mr=1 L(qr)o, x + δ /∈ ⋃mr=1 L(qr). Since x + δ is contained in L(p̂) but not in(⋃n

s=1 L(qs − ε)
)⋃ (⋃m

r=1 L(qr)
)
, we have L(p̂) 6⊆

(⋃n
s=1 L(qs − ε)

)⋃ (⋃m
r=1 L(qr)

)
.

(The if-part) Fix ε � 0 such that for any p̂ � p, L(p̂) 6⊆
(⋃n

s=1 L(qs −
ε)
)⋃ (⋃m

r=1 L(qr)
)
. Clearly, for each θ ∈ (1

2 , 1), θp� p, and there exists xθ ∈ L(θp)
such that xθ 6∈

(⋃n
s=1 L(qs − ε)

)⋃ (⋃m
r=1 L(qr)

)
. Note that {xθ}θ∈( 1

2 ,1) ⊆ L(1
2p),

which is compact. Therefore, {xθ}θ∈( 1
2 ,1) has a convergent sequence. Let x

denote the limit of this sequence. Since xθ ∈ L(θp), x ∈ L(p). Furthermore,
(1) x 6∈

(⋃n
s=1 L(qs)

)
, otherwise x ∈ L(qs − ε)o for some s, which implies that

xθ ∈ L(qs − ε)o for some θ and some s; and (2) x 6∈
(⋃m

r=1 L(qr)o
)
, otherwise

xθ ∈ L(qr) for some r and some θ. Since x is contained in L(p) but not in(⋃n
s=1 L(qs)

)⋃ (⋃m
r=1 L(qr)o

)
, we have L(p) 6⊆

(⋃n
s=1 L(qs)

)⋃ (⋃m
r=1 L(qr)o

)
.

It is easy to see that L(p̂) 6⊆
(⋃n

s=1 L(qs − ε)
)⋃ (⋃m

r=1 L(qr)
)
if and only if for

all q ∈ conv
(
{qs − ε}ns=1

⋃{qr}mr=1

)
, p̂ 6≥ q (by a separating hyperplane argument

similar to the one used in the proof of Corollary 2 of the main paper). The desired
result then follows from this and Proposition A1.

B Upper contour rationalization
As we explain in Section 3.5 of our main paper there is a connection between
menu preference rationalization and the upper contour rationalization studied in
de Clippel and Rozen (2021) (see de Clippel and Rozen (2012) for an early version).
In particular, when X is finite (so that all the relevant subsets in both problems are
also finite), the two problems could be thought of as equivalent in the sense that it
is always possible to convert one problem into the other.
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Indeed, notice that menu A is strictly preferred to menu B if and only if there is
an upper contour rationalization of the following set of observations:(

{{y}}y∈A, x
)
for each x ∈ B.

For example, {x, y} is strictly preferred to {z, w} if and only if there is an upper
contour rationalization of the observations ({{x}, {y}}, z) and ({{x}, {y}}, w).
Conversely, suppose we wish to guarantee that there is a set in the collection
{Aj}j∈J that is contained in the upper contour set of x; this is equivalent to a
rationalization of the following collection of menu preference pairs:(

∪j∈J {yj}, x
)
for each ∪j∈J {yj} where yi ∈ Aj for all j ∈ J.

For example, either {x, y} or {z} is in the upper contour set of w if and only if there
is a rationalization of the following menu preferences: {x, z} is preferred to {w} and
{y, z} is preferred to {w}.

It follows from these observations that it is always possible to convert an upper
contour rationalization problem into a menu preference rationalization problem
and vice versa when X is finite (but not when it is infinite) and any algorithm
developed for one problem could, in principle, be used to solve the other. However,
it should also be clear from the conversion procedure we outlined above that there
is no general reason for solving either problem in this roundabout fashion, since the
converted data set would have more (and in some cases many more) observations
than the original data set. The two algorithms are best understood as distinct and
serving different purposes.

C Never-Covered Property Algorithm
In the next section of this appendix, we provide an implementation of Algorithm I for
checking the never-covered property (as formulated in Section 3.3 of the main paper).
Specifically, we use the algorithm to calculate the perturbation index (introduced in
Section 5.3 (Example 6) of the main paper), which measures the severity of a data
set’s departure from rationalizability. In this section, we explain in detail how we
use Algorithm I to calculate this index.

C.1 Perturbation Index
Our starting point is a data set D = {(xt, L(pt))}t∈T where xt ∈ Rn

+ is the observed
choice from the budget set L(pt) = {x ∈ Rn

+ : pt · x ≤ 1} (where pt ∈ Rn
++

are the prevailing prices at observation t and income is normalized at 1 across
all observations). Such a data set is (exactly) D-rationalizable if there is a utility
function u : Rn

+ → R that extendsD such that u(xt) ≥ u(x) for all x ∈ L(pt). Afriat’s
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Theorem and its generalizations (see, in particular, Nishimura, Ok and Quah (2017)),
provide necessary and sufficient conditions under which D is D-rationalizable.

In most empirical settings (with observational or experimental data) it is common
for subjects to fail this exact test of rationality and various ways have been proposed
to measure the severity of a subject’s departure from rationality. Perhaps the
most common measure is the critical cost efficiency index due to Afriat (1973),
which measures the extent to which the revealed preference implications of the data
have to be attenuated in order to guarantee rationalizability. We say that D is
D-rationalizable at efficiency level e ∈ (0, 1] if there is a utility function u extending
D such that u(xt) ≥ u(x) for all x ∈ Rn

+ that satisfy pt · x ≤ e. Obviously, if D is
D-rationalizable, then it is D-rationalizable at efficiency level 1. The critical cost
efficiency index is

e∗ := sup{e : D is D-rationalizable at efficiency level e}.

In Section 5.3 (Example 6) of the main paper, we explain how our results could
be used to calculate another measure of the departure from rationality by measuring
how significantly we need to modify the recorded demand xt before the data set
becomes exactly rationalizable. To be precise, the researcher in our example observes
that the consumer chooses the bundle xt from the budget set L(pt). To allow for
the possibility that xt was observed with error, the researcher could allow for the
true consumption bundle to be in the set

At,κ = {x ∈ L(pt) : pt · x = 1 and |ptixi − ptixti| ≤ κ for all i},

where κ ∈ [0, 1]. In other words, the true expenditure on good i is allowed to deviate
from ptix

t
i but not by more than the fraction κ. In experimental settings, where

there is no question that xt is indeed the observed choice, we could interpret κ as a
measure of the extent to which we allow the subject to make mistakes.

Whatever the interpretation, we can test, via the never covered property, whether
there is a utility function u : Rn

+ → R that extends a given preorderD and rationalizes
the coarse data set

Oκ =
{(
At,κ, L(pt)

)}
t∈T

in the sense that

arg max{u(x) : x ∈ L(pt)} ∩ At,κ 6= ∅ for all t ∈ T .

In other words, if Oκ is rationalizable, we know that there are bundles x̃t, such that
|ptix̃ti − ptixti| ≤ κ for all i and t, and D̃ = {(x̃t, L(pt)}t∈T is exactly rationalizable.
Provided we can determine the rationalizability of Oκ, we can calculate the

5



perturbation index
κ∗ := inf {κ : Oκ is D-rationalizable}

by binary interpolation. The index gives the smallest perturbation of the observations
needed to guarantee that the coarsened data set Oκ is D-rationalizable. Obviously,
if D is exactly rationalizable to begin with, then its perturbation index equals zero.2

C.2 Relationship with Varian (1985)
The idea of relaxing a revealed preference test to allow for measurement error was
also explored by Varian (1985). That paper uses this idea to test the hypothesis
that a firm is cost minimizing. Using our language, the introduction of measurement
error leads to a coarsening of the data set, where the true choice made by the firm is
allowed to be in a ball around the observed choice xt. Because the hypothesis being
tested is different (cost-minimization rather than utility-maximization), the test
used in that paper is not related to the never-covered property. To be precise, Varian
(1985) assumes that the observer has information on factor prices, factor demand
(imperfectly observed) and the output level. In the context of consumption data, the
analog to the output level would be the utility level, but notice that we do not require
this information (even in an ordinal form) to be part of our observations. It is the
absence of this information that makes testing the utility-maximization hypothesis
(with or without coarsening) a different exercise from testing cost-minimization.

C.3 Computing the perturbation index
According to our main result (Theorem 1 in Section 3.2) the rationalizability of Oκ

by a utility function extending D is equivalent to the never-covered property under
D. The latter could be checked using Algorithm I set out in Section 3.3. In the
empirical application discussed in the next section, we focus on two preorders. The
first case is D=≥, the product order, which is equivalent to requiring the utility
function u to be strictly increasing. The second case is D=≥sym, where x ≥sym x′

whenever there is a permutation of the entries of x, which we denote by xσ, such that
xσ ≥ x′. It is straightforward to check that a utility function extends the preorder
≥sym if and only if it is strictly increasing and symmetric. Since ≥⊂≥sym, if Oκ is
≥sym-rationalizable then it must be ≥-rationalizable and so the perturbation index
in the former (more restrictive) model must be weakly greater than in the latter.

Checking whether Oκ is D-rationalizable using Algorithm I requires us to check
whether T ′ = Φ(T ′) (where Φ(T ′) is the set of revealed dominated observations)

2 Notice that if κ = 1, then the set At = L(pt) and thus O1 is always rationalizable. Thus the
perturbation index is always well-defined.
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for a nested sequence of observations T ′ ⊆ T . For a given T ′, the check of whether
T ′ = Φ(T ′) in turn requires the calculation of an increasing sequence of subsets of
observations Φ1(T ′), Φ2(T ′), and so forth that terminate at Φ(T ′). Implementing
this procedure is straightforward because, in our context, checking if an observation
belongs to Φk(T ′) (for a given k) reduces to checking if there is a solution to a
system of linear inequalities. We now explain this in detail for D=≥ and D=≥sym.

Case 1: D=≥ In this case, L(pt)↓ = L(pt) and L(pt)↓↓ = L(pt)o (i.e., the interior
of L(pt)), so

Φ1(T ′) =
{
t ∈ T ′ : At ⊆

⋃
t∈T ′

L(pt)o
}
.

We calculate Φ1(T ′) by checking whether each As (for s ∈ T ′) belongs to ⋃t∈T ′ L(pt)o

and this in turn can be verified by checking if there is a solution to the system of
linear inequalities below, with unknown z ∈ Rn:

z ≥ 0

ps · z = ps · xs

|psizi − psixsi | ≤ κ for each good i

pt · z ≥ 1, for all t ∈ T ′.

Clearly, As ⊆ ⋃ t∈T ′ L(pt)o if and only if there is no solution to this system of linear
inequalities.

Having calculated Φ1(T ′) we can then calculate Φ2(T ′) (which contains Φ1(T ′)),
where

Φ2(T ′) :=
{
t ∈ T ′ : At ⊆

(⋃
t∈T ′

L(pt)o
) ⋃ (⋃

t∈Φ1(T ′) L(pt)
)}

,

Φ3(T ′), and so forth until Φm(T ′) = Φm+1(T ′) at which point we can check whether
Φ(T ′) := Φm(T ′) is a strict subset of T ′ (as required by the algorithm).

Case 2: D=≥sym In this case, the calculation of Φ(T ′) is a bit more elaborate.
We confine ourselves to outlining the case where n = 2 since that is the case in
the application we consider in the next subsection. For this preorder, L(pt)↓ =
L(pt) ∪ Lσ(pt), where

Lσ(pt) = {(b, a) : (a, b) ∈ L(pt)}.

In other words, L(pt)↓ consists of vectors in L(pt) and their permutations. Then

Φ1(T ′) =
{
t ∈ T ′ : At ⊆

(⋃
t∈T ′

L(pt)o
)⋃(⋃

t∈T ′
Lσ(pt)o

) }
.

To check if a given observation s is in Φ1(T ′), we solve the following linear system
for z:

z ≥ 0
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ps · z = ps · xs

|psizi − psixsi | ≤ κ for each good i

pt · z ≥ 1 for all t ∈ T ′

pt · zσ ≥ 1 for all t ∈ T ′

(where, by definition, zσ = (z2, z1) if z = (z1, z2)). We conclude that s ∈ Φ1(T ′) if
there is no solution to this linear system. Having ascertained Φ1(T ′) we proceed in
a similar fashion to determine Φ2(T ′) and so on, until we obtain Φ(T ′) and could
then check if it is a strict subset of T ′.

Other preorders If we compare the check of whether a given observation s is
in Φ1(T ′) in the case where D=≥ with the case where D=≥sym, we see that the
latter involves the additional conditions pt · zσ ≥ 1 for all t ∈ T ′. This is consistent
with the fact that ≥⊂≥sym. In general, the precise way of checking whether a given
observation s is in Φ1(T ′) will be different for different preorders. However, for
familiar preorders—such as those which require a preference to exhibit impatience,
respect first order stochastic dominance or satisfy symmetry across all or some goods
(see Lanier et al. (2020) for specific examples of such ‘well-behaved’ preorders D)
— the checks are all simple in the sense that they involve solving systems of linear
inequalities.

The next subsection further discusses the computational properties of our method.

C.4 Comparison with alternative methods
We know from Afriat’s Theorem that a data set D = {(xt, L(pt))}t∈T obeys GARP
(and is thus ≥-rationalizable) if and only if there are ut and λt (for t ∈ T ) that solve
the Afriat inequalities

λt > 0

us ≤ ut + λtpt · (xs − xt) for s 6= t.

This immediately gives us an alternative way to check whether Oκ is ≥-rationalizable:
we can check whether there are ut, λt, and bundles zt (for t ∈ T ) that solve

zt ≥ 0

|psizi − psixsi | ≤ κ for each good i

λt > 0

us ≤ ut + λtpt · (zs − zt) for s 6= t.

Notice that this approach to checking the ≥-rationalizability ofOκ is not generally
extendable to checking rationalizability with respect to other preorders. This is
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because even though the D-rationalizability of D can be ascertained by a suitably
generalized version of GARP (see Nishimura, Ok and Quah (2017)), there is no
known analog to the Afriat inequalities for this general case. But this approach
is unsatisfactory even for ascertaining the ≥-rationalizability of Oκ because the
system of inequalities is bilinear in the unknowns and solving a bilinear system of
inequalities is, in general, an NP-hard problem (see Toker and Ozbay (1995)).

On the other hand, checking whether Oκ is ≥-rationalizable can be accomplished
in polynomial time. This is because Algorithm I requires us to check whether
T ′ = Φ(T ′) (where Φ(T ′) is the set of revealed dominated observations) for a
decreasing sequence of observations, beginning with T ′ = T . The check of whether
T ′ = Φ(T ′) in turn involves the calculation of increasing subsets of observations
Φ1(T ′), Φ2(T ′) and so forth that terminate at Φ(T ′). Calculating each Φm(T ′)
requires us to solve at most |T ′| + 1 − m systems of linear inequalities (see the
explanation on the calculation of Φ(T ′) in Section C.4). Thus establishing whether
T ′ = Φ(T ′) involves solving at most |T ′|(|T ′|+ 1)/2 linear problems and establishing
the ≥-rationalizability of Oκ involves solving no more than
|T |(|T |+ 1)

2 + (|T | − 1)|T |
2 + (|T | − 2)(|T | − 1)

2 + . . . = |T |(|T |+ 1)(|T |+ 2)
6

linear problems.3

D Empirical Analysis
We study the data collected from the portfolio choice experiment in Choi et al. (2007).
The experiment was performed on 93 undergraduate subjects at the University of
California, Berkeley. Every subject was asked to make consumption choices on 50
decision problems. In each problem, the subject divided her budget between two
Arrow-Debreu securities, with each security paying 1 token (equivalent to US$0.50)
if the corresponding state was realized, and 0 otherwise. We focus on the symmetric
treatment where each state of the world occurred with a commonly known probability
of 1/2. This treatment was applied to 47 subjects (subjects ID 201-219 and 301-328).
The prices of the Arrow-Debreu were chosen at random (over some compact interval)
and varied across problems and subjects, with income normalized at 1 throughout.

For each state s ∈ {1, 2}, let xs denote the demand for the security that pays
off in that state and let ps denote its price. For each subject and in each decision
problem t ∈ T = {1, . . . , 50}, the state prices pt = (pt1, pt2) were randomly chosen

3 There are well-known polynomial-time algorithms for checking the solvability of a system of
linear inequalities; see Karmarkar (1984).
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and the subject faced a budget set

L(pt) =
{
x ∈ R2

+ : pt1x1 + pt2x2 ≤ 1
}
.

The data set for a subject can be written as D = {(xt, L(pt))}50
t=1, where xt is the

subject’s choice in L(pt).
In calculating the perturbation index, we apply Algorithm I repeatedly across

different values of κ, at each stage checking the D-rationalizability of Oκ and
obtaining the perturbation index by binary interpolation. We calculate the
perturbation indices in the cases where D=≥ and ≥sym and denote the corresponding
indices by κ∗ and κ∗∗. Note that since the two states are equiprobable, ≥sym=≥FSD
(see the definition of the latter in Section 3.7 (Example 4) of the main paper); in
other words, a subject’s utility function respects first order stochastic dominance if
and only if it extends ≥sym.

D=≥ D=≥sym
κ = 0.2 κ = 0.3 κ = 0.3 κ = 0.4

|T 1| 48 47 48 48
|T 2| 47 46 46 46
|T 3| 45 44 45 45
|T 4| 41 39 42 41
|T 5| 39 36 41 36
|T 6| 37 31 39 34
|T 7| 33 25 36 31
|T 8| 27 20 34 27
|T 9| 21 18 33 25
|T 10| 18 16 33 21
|T 11| 18 13 18
|T 12| 8 14
|T 13| 4 10
|T 14| 2 8
|T 15| 1 6
|T 16| 0 4
|T 17| 2
|T 18| 1
|T 19| 0

Table 1: Testing the never-covered property on Subject 201.
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As an illustration of how the perturbation index is computed, Table 1 shows
the steps involved when Algorithm I is applied to data from Subject 201. The
algorithm involves calculating the set of revealed dominated observations T 1 := Φ(T )
and then checking whether T 1 = T ; if not, it calculates T 2 := Φ(T 1) and checks
whether T 2 = T 1; and so forth until either T k = T k−1 (in which case Oκ is not
D-rationalizable) or T k = ∅ (in which case Oκ is D-rationalizable). T 1, T 2, T 3 . . .

form a nested sequence of sets; the number of elements in each set is indicated in
Table 1. We see that when κ = 0.2, Oκ is not ≥-rationalizable because T 10 = T 11

and is nonempty while Oκ is ≥-rationalizable when κ = 0.3, because T 16 is empty.
This suggests that κ∗ lies between 0.2 and 0.3. Indeed, by binary interpolation, we
find that κ∗ = 0.2151.

Similarly, to calculate κ∗∗, we need to check if Oκ is ≥sym-rationalizable for
different values of κ. Applying our Algorithm I again, we find that Oκ is not
≥sym-rationalizable when κ = 0.3 because T 9 = T 10 and is nonempty; on the other
hand, when κ = 0.4, Oκ becomes ≥sym-rationalizable. Thus κ∗∗ is between 0.3 and
0.4, and through further interpolation we obtain κ∗∗ = 0.3229.

Similar calculations are carried out for the other 46 subjects. The cumulative
distributions of κ∗ and κ∗∗ are depicted in Figure 1. For each r ∈ [0, 1], we plot the
percentage of subjects whose perturbation indices are less than or equal to r. Since
for each subject κ∗ ≤ κ∗∗, the distribution of κ∗∗ first-order stochastically dominates
that of κ∗.

How does the perturbation index compare with other measures of a data set’s
rationality and, in particular, Afriat’s critical cost efficiency index? Since a larger
critical cost efficiency index is closer to rationality whereas a smaller perturbation
index is closer to rationality, the two indices are naturally negatively correlated. In
Table 2, we report the correlation coefficients between these two indices, making
use of the critical cost efficiency indices calculated for the same set of subjects in
Polisson, Quah and Renou (2020). Note that the indices under ≥sym are slightly
less correlated than under ≥. In each case, the rank correlation coefficient is higher
than the linear correlation coefficient. Lastly, the two indices are not perfectly
correlated in any of the four cases, which suggests that how subjects perform on
the perturbation index could convey information not conveyed by the critical cost
efficiency index. It would be interesting to see how this index performs as a measure
of rationality, compared to other measures; for example, whether, like the critical
cost efficiency index, it can help explain broader economic outcomes (see Choi et al.
(2014)). These are interesting topics for future study.
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Figure 1: Distributions of κ∗ and κ∗∗.

Linear Correlation Coefficient Rank Correlation Coefficient

D=≥ D=≥sym D=≥ D=≥sym
−0.79499 −0.77732 −0.91911 −0.86829

Table 2: Correlation between perturbation index and critical cost efficiency index.

E Characterization of Multiple Preferences
Theorem 6 holds for any data set (Σ, f). In the special case of complete data, that is,
when Σ = X , Aizerman and Malishevski (1981) shows that the multiple preferences
model could be characterized by the following two axioms:

Chernoff: A ⊆ B ⇒ f(B) ∩ A ⊆ f(A) for all A,B ∈ X .

Aizerman: f(B) ⊆ A ⊆ B ⇒ f(A) ⊆ f(B) for all A,B ∈ X .

In words, the Chernoff axiom says that a best choice in some set is still best if the
set shrinks. The Aizerman axiom says that deleting from a given set some choices
outside the choice set cannot make new choices chosen. We establish this result as a
corollary of Theorem 6 by showing that condition (7) follows from the Chernoff and
Aizerman axioms in the case of complete data.
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Corollary 1 (Aizerman and Malishevski (1981)). The data set (X , f) is rational-
izable by multiple preferences if and only if it satisfies the Chernoff axiom and the
Aizerman axiom.

Proof. The only if-part is trivial. We prove the if-part below, by showing that
condition (7) in Theorem 6 follows from the Chernoff and Aizerman axioms.

Claim 1. For any A ∈ X , if x ∈ g(A), then f(f(A) ∪ x) = f(A).

Proof. Since
(
f(A) ∪ x

)
⊆ A, the Chernoff axiom implies that f(A) ⊆ f(f(A) ∪ x).

Since f(A) ⊆
(
f(A)∪x

)
⊆ A, the Aizerman axiom implies that f(f(A)∪x) ⊆ f(A).

Thus, f(f(A) ∪ x) = f(A).

Claim 2. For any A,B ∈ X , if f(A) ⊆ B, then f(B) ∩ g(A) = ∅.

Proof. Suppose that there exists some x ∈ f(B) ∩ g(A). Since x ∈ g(A), by Claim
1, x is not chosen in f(A) ∪ x. The Chernoff axiom implies that x is not chosen in
any superset of f(A) ∪ x. In particular, x /∈ f(B). We have a contradiction.

Claim 3. Condition (7) holds, i.e., for any nonempty X ′ ⊆ X and B ∈ X , if(
∪A∈X ′ f(A) \ ∪A∈X ′ g(A)

)
⊆ B, then f(B) ∩

(
∪A∈X ′ g(A)

)
= ∅.

Proof. Fix an arbitrary nonempty X ′ ⊆ X . By the Chernoff axiom, g(C) ⊆
g
(
∪A∈X ′ A

)
for all C ∈ X ′. Therefore, ∪A∈X ′ g(A) ⊆ g

(
∪A∈X ′ A

)
. We then have

f
(
∪A∈X ′ A

)
= ∪A∈X ′ A \ g

(
∪A∈X ′ A

)
⊆ ∪A∈X ′ A \ ∪A∈X ′ g(A)

= ∪A∈X ′ f(A) \ ∪A∈X ′ g(A).

Thus, if
(
∪A∈X ′ f(A) \ ∪A∈X ′ g(A)

)
⊆ B for some B ∈ X , we must have f

(
∪A∈X ′

A
)
⊆ B. By Claim 2, f(B) ∩ g

(
∪A∈X ′ A

)
= ∅. Since ∪A∈X ′ g(A) ⊆ g

(
∪A∈X ′ A

)
,

we obtain f(B) ∩
(
∪A∈X ′ g(A)

)
= ∅.

By Theorem 6, (X , f) is rationalizable by multiple preferences.
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