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Abstract

Incomplete information can invalidate standard results on stable matchings,

such as the celebrated lone-wolf theorem and lattice theorem. In this paper,

we investigate how these properties may generally fail in Bayesian matching

markets. Then for each of them, we study the conditions that restore positive

results. The key condition which we call common information includes complete
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1 Introduction

Since the seminal work of Gale and Shapley (1962), for several decades, stability has

been a key notion used in theoretical study as well as practical design of matching

markets.1 Conceptually, stability has been connected to both equity and efficiency,

two of the most important notions in economics.2 Practically, the design of many

matching markets aims to achieve stable matchings.3

The structure of the set of stable matchings is well understood in the complete-

information setting, where the characteristics and preferences of all market partic-

ipants are publicly known.4 Particularly, structural results such as the lone-wolf

theorem, the rural-hospital theorem, the lattice theorem, the opposition of interests

between the two sides of the market, and the existence of extreme stable matchings

have been the cornerstone of matching theory and market design practice.

However, incomplete information can invalidate standard results on stable

matchings, including all the aforementioned ones. Even more fundamentally, as

emphasized recently by Liu et al. (2014) and Liu (2020), incomplete information

drastically changes the way we define stability, particularly in what information

can be inferred from various possible observations and how information should be

updated.5

1See Roth and Sotomayor (1990) and, more recently, Chiappori, Salanie and Che (2024) for
comprehensive surveys.

2See, e.g., Abdulkadiroglu and Sönmez (2013) for how stability implies the elimination of justified
envy, a basic fairness axiom; see, e.g., Shapley and Shubik (1971) for how stability leads to efficiency.

3See, e.g., Roth and Peranson (1999) and Abdulkadiroglu and Sönmez (2013) for the designing
of practical markets.

4For structural results, see, e.g., Roth (1982), Roth (1984), Gale and Sotomayor (1985b), Gale
and Sotomayor (1985a), Klaus and Klijn (2010), Knuth (1976), Blair (1984, 1988), Martínez et al.
(2001), Azevedo and Leshno (2016), Hu, Li and Tang (2020).

5This arising literature also includes Bikhchandani (2017), Alston (2020), Liu (2023, 2024),
Chen and Hu (2020, 2023, 2024), Wang (2023), Pomatto (2022), and Peralta (2024). Another
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In this paper, we investigate how two celebrated results, i.e., the lone-wolf

theorem and the lattice theorem, may generally fail in Bayesian matching markets.6

Then for each of them, we study the conditions that restore positive results. Our key

condition called “common information” includes the condition of complete information

as a special case.

Section 2 sets up the model, where we adopt the stability concepts of Liu (2020)

and Chen and Hu (2024) in the one-sided incomplete-information setting, but exclude

transfers as in Bikhchandani (2017). Bayesian stability is defined over market states,

which specify a matching (who matches with whom), a realized type profile (what

the payoff-relevant types are) and an information structure (what each agent knows).

The existence of Bayesian stable states has been established in earlier works.

Section 3 first provides an example showing that, with incomplete information,

the lone-wolf theorem generally fails (Example 1). The key insight is that information

updating may encourage a previously unmatched firm to approach a worker whom

the firm did not approach because of unresolved uncertainty. Then we prove that if

two Bayesian stable states have the common information structure, then the set of

unmatched agents is the same across the two states (Proposition 1). Since complete

information is a special case of common information, the lone-wolf theorem actually

holds more generally. Finally, we provide three examples showing that (1) the common

information condition is not necessary, (2) more information may lead to less matched

agents, and (3) more information may lead to more matched agents (Examples 2-4).

So our knowledge about the lone-wolf property is limited beyond those subsets of

Bayesian stable states with common information.

stream of literature takes the mechanism design approach. See, e.g., Roth (1989), Yenmez (2013),
Chakraborty, Citanna and Ostrovsky (2010).

6Fernandez, Rudov and Yariv (2022) also studies structural properties in matching under
incomplete information, but for equilibrium outcomes instead of stable outcomes.
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Section 4 studies the lattice theorem in a similar manner. Without common

information, Example 1 shows that the lattice theorem fails. Now, interestingly, even

with common information, the lattice theorem cannot be restored. A simple logical

reason is that, unlike the lone-wolf theorem that only compares two given states,

the lattice theorem examines two generated states from two given states, where the

more complicated situation makes the common information condition inadequate. A

concrete example is provided to illustrate the economic reason (Example 5). Then, we

borrow intuitive sufficient conditions from Liu (2020) to restore the lattice theorem

(Proposition 2). Again, since complete information is a special case of common

information, the lattice theorem actually holds more generally, at least in markets

that satisfy Liu’s conditions.

The complete-information matching literature is so vast that it is impossible to

address all related questions with incomplete information in one paper. Section 5

concludes with several future directions.

2 Model

We adopt the setup of Liu (2020) but assume away transfers like Bikhchandani (2017).

Let I = {1, . . . , n} be a set of workers and J = {n+ 1, . . . , n+m} be a set of firms.

Let Ti be a finite set of types for worker i. Worker i’s type ti ∈ Ti is his private

information. Denote by t = (t1, . . . , tn) ∈ T = ×ni=1Ti a type profile for the n workers.

There is a common prior β ∈ ∆(T ) on workers’ type profiles, and β has a full support.

Each firm j’s type is commonly known and is summarized by the index j. Similarly,

each worker i can also have publicly observable, payoff-relevant attributes that are

summarized by i.

Let aij(ti) ∈ R and bij(ti) ∈ R be the matching values worker i (with type ti)

and firm j receive, respectively, when they match. To ease notation, for a profile
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of workers’ types t = (ti, t−i) ∈ T , we write aij(t) ≡ aij(ti) and bij(t) ≡ bij(ti).

Normalize the unmatched values to be zero, i.e., aii(t) = bjj(t) = 0. To facilitate the

comparison with complete-information settings, we assume strict preferences, i.e.,

for each i ∈ I and every t ∈ T , aij(t) 6= aij′(t) for any j 6= j′, and

for each j ∈ J , Eβ [bij|D] 6= Eβ [bi′j|D′] for any (i,D) 6= (i′, D′), where D,D′ ⊆ T.7

The latter inequality reduces to bij(t) 6= bi′j(t), for any i 6= i′, if firms have complete

information at t.

We denote a matching market by

Γ = (I, J, t, T, β, a, b).

The solution of a matching market is referred to as Bayesian stable states, a concept

adopted from Chen and Hu (2024). Roughly speaking, a market state specifies a

matching (who matches with whom), a realized type profile (what the payoff-relevant

types are) and an information structure (what each agent knows). Below we formally

describe a market state and define Bayesian stability of it.

A matching is a one-to-one function µ : I ∪ J → I ∪ J that pairs up workers

and firms such that the following holds for each i ∈ I and each j ∈ J :

(1) µ(i) ∈ J ∪ {i},

(2) µ(j) ∈ I ∪ {j}, and

(3) µ(i) = j if and only if µ(j) = i.

If µ(i) = i or µ(j) = j, we say that the agent is unmatched.

Firms’ information structure is described by a partition profile

Π = (Πn+1, . . . ,Πn+m),

7No indifference here seems to be restrictive. However, since T is finite, it only has finitely many
subsets. Then if we consider the space of matching value functions and prior beliefs, indifference
can only occur on a measure zero set.
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where for each j ∈ J , Πj is a partition over T . A market state, or simply a state,

(µ, t,Π) specifies a matching µ, a realized type profile t and an information structure Π.

The partitional formulation allows for arbitrarily heterogeneous information among

firms and, more importantly, facilitates the aggregation of pieces of information when

the market is unstable and evolving.8 Say partition profile Π′ is (weakly) finer than

partition profile Π if, for each firm j, we have Π′j (t) ⊂ Πj (t) for every type profile

t ∈ T .9

Bayesian stability of a market state has three requirements: individual rational-

ity, no blocking and information stability.

Definition 1. A state (µ, t,Π) is individually rational (IR) if

aiµ(i)(t) ≥ 0 for all i ∈ I and

Eβ
[
bµ(j)j

∣∣Πj(t)
]
≥ 0 for all j ∈ J.

To define a pairwise deviation (i, j) for the state (µ, t,Π) , we first clarify firm

j’s belief when evaluating such a deviation. Let Dµ,ij be the set of type profiles such

that worker i strictly benefits from the rematching with firm j, i.e.,

Dµ,ij :=
{
t′ ∈ T : aij(t

′) > aiµ(i)(t
′)
}
. (1)

Intuitively, for the pairwise deviation (i, j) to be viable, firm j must expect to benefit

from rematching with worker i. When calculating her expected payoff, a type profile t′

is relevant for firm j only when t′ ∈ Dµ,ij ; any type profile that violates the inequality

8The aggregation of two pieces of information is simply the join of two partitions; see Aumann
(1976).

9Some papers, e.g., Liu et al. (2014), assume observability within matched pairs, i.e., each
matched firm j can observe the type of her employee µ(j), whereas others may not, e.g., Liu
(2020). Let Πµ denote the partition profile that is generated by a matching µ and the observability
assumption, i.e., for every j and every t, t′ ∈ Πµ

j (t) if and only if t′µ(j) = tµ(j). Then the observability
assumption is equivalent to saying that in each state (µ, t,Π), Π is weakly finer than Πµ. It is
straightforward to verify that our definitions, examples and results would all go through with this
assumption.
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in (1) is irrelevant due to the worker’s objection. Based on firm j’s initial knowledge

Πj(t) and the hypothetical knowledge Dµ,ij , firm j’s belief shall be β(·
∣∣Πj(t) ∩Dµ,ij),

which is referred to as “off-path” belief in Liu (2020).

Definition 2. A state (µ, t,Π) is blocked by (i, j) if

aij(t) > aiµ(i)(t) and

Eβ
[
bij
∣∣Πj(t) ∩Dµ,ij

]
> Eβ

[
bµ(j)j

∣∣Πj(t) ∩Dµ,ij

]
.

For a market state to be stable, information stability captures the intuition

that the absence of individual/pairwise deviation provides no further information to

firms (in addition to what is already described in the market state, i.e., Π). This

requirement is necessary because the absence of deviation may provide additional

information to firms, which in turn leads to a deviation; see Chen and Hu (2024,

Example 1).

To formulate information stability, we define a set of type profiles as follows:

Nµ,Π := {t′ ∈ T : (µ, t′,Π) is IR and not blocked} .

Moreover, let KΠ denote the meet (i.e., finest common coarsening) of the partition

profile Π. Given a state (µ, t,Π), the set KΠ(t) is the cell of the common knowledge

partition that contains the realized type profile t. Intuitively, upon observing the

absence of individual/pairwise deviation, each firm should refine their partitions within

the common knowledge cell KΠ(t), according to the newly acquired information that

the realized type profile must lie in Nµ,Π. For notational convenience, we denote by

Nµ,Π the binary partition that is induced by Nµ,Π, i.e., Nµ,Π := {Nµ,Π, T \Nµ,Π}.

Define an operator Hµ(·) (H istory) to represent the information refinement as follows:

[Hµ(Π)]j(t
′) :=

Πj(t
′) ∩Nµ,Π(t′), if t′ ∈ KΠ(t);

Πj(t
′), otherwise.

If Hµ(Π) = Π, then the fact of individual rationality and no blocking pair provides

no further information to firms (in addition to their knowledge Πj(t)).
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Definition 3. A state (µ, t,Π) is Bayesian stable if it satisfies the following three

requirements:

(1) (µ, t,Π) is individually rational.

(2) (µ, t,Π) is not blocked.

(3) Hµ(Π) = Π.

See Example 1 in the next section for an illustration of Bayesian stable states.

For any matching market, the following theorem assures the existence of Bayesian

stable states. We attribute the result to earlier papers because in proving existence,

whether utility is transfer or not does not play a role.

Theorem (Liu, 2020, Proposition 3; Chen and Hu, 2024, Proposition 1). If µ is a

complete-information stable matching when t is commonly known, then there exits Π

such that (µ, t,Π) is a Bayesian stable state.

Particularly, any Π with KΠ(t) = {t} is desirable. When T is a singleton,

information becomes complete. Then, stability of a matching is defined merely by

individual rationality and no blocking, as in Gale and Shapley (1962). In this case,

the theorem reduces to Gale-Shapley’s existence result.

In the complete-information setting, the structure of the set of stable matchings

is well understood; see Roth and Sotomayor (1990) for a comprehensive survey. Here,

we investigate two celebrated structural results, the lone-wolf theorem and the lattice

theorem.10,11 Some related structural results can be discussed once (and only if) we

restore these two results.

10The term “lone-wolf” is adopted from Gusfield and Irving (1989, Theorem 4.5.2).
11The opposition of interests between the two sides of the market (Roth and Sotomayor, 1990,

Theorem 2.13, attributed to Knuth) and the existence of extreme matchings (Gale and Shapley,
1962) can be viewed as corollaries of the lattice theorem.
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3 The lone-wolf theorem

We recap the benchmark theorem in the complete-information setting first.

Theorem (Gale and Sotomayor, 1985a; 1985b). The set of unmatched agents is the

same in all stable matchings.

Example 1 (Failure of the lone-wolf theorem with incomplete information).

Consider a matching market Γ, where I = {i}, J = {j, j′}, the true type profile is t∗,

and the other ingredients of Γ are given as follows:

β aij bij aij′ bij′

t∗ 0.5 2 6 4 8

t 0.5 2 2 4 −9

In words, T contains two possible type profiles t∗ and t, which are equally probable.

Worker i prefers firm j′ to firm j under both type profiles. Firms’ matchings values

with worker i are higher under t∗ than under t.

Fix the true type profile t∗. There are two possible kinds of Bayesian stable

states in market Γ: either i is matched with j or with j′, associated with proper

information structure. Any state with i unmatched is blocked by (i, j). Two candidate

states are described below.

(1) (µ, t∗,Π), where µ(i) = j, Πj = {{t∗} , {t}}, and Πj′ = {{t∗, t}}.

(2) (µ̂, t∗, Π̂), where µ̂(i) = j′, Π̂j = {{t∗} , {t}}, and Π̂j′ = {{t∗} , {t}}.

We proceed to verify that the two states are indeed Bayesian stable. First, state

(µ, t∗,Π) is individually rational, and it is not blocked by (i, j′) since j′ would expect

a negative matching value. Moreover, given µ and Π, both (µ, t∗,Π) and (µ, t,Π)

are individually rational and not blocked, which means that Nµ,Π = {t∗, t}. As a

result, information stability holds as well. Therefore, state (µ, t∗,Π) is Bayesian
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stable. Similarly, state (µ̂, t∗, Π̂) is individually rational, and it is not blocked by

(i, j) since i would have a strictly lower matching value, i.e., Dµ̂,ij = ∅. Moreover,

it is straightforward to verify that information stability holds as well. Therefore,

state (µ̂, t∗, Π̂) is Bayesian stable, where µ̂ is actually the complete-information stable

matching at t∗.

Obviously, the sets of unmatched agents differ in the two Bayesian stable states.

Below we provide a sufficient condition to restore the lone-wolf theorem.

Proposition 1. Let (µ, t,Π) and (µ̂, t, Π̂) be two Bayesian stable states.12 If Π̂ = Π,

then the set of unmatched agents is the same in two states.

There are four remarks. First, to have the lone-wolf theorem, agents do not

need to have complete information; instead, “common” information is sufficient.13 In

this sense, Proposition 1 generalizes Gale and Sotomayor’s theorem. Furthermore, in

the more general setting with incomplete information, the lone-wolf theorem actually

does not fail. Instead, it holds more generally: If we stratify the set of Bayesian

stable states according to the information structure, then the lone-wolf theorem holds

in every stratum. The complete-information lone-wolf theorem is only one of them.

Second, one may doubt whether the common information condition imposed on

Π is primitive or not, given that it is part of the solution—Bayesian stable states.

Just as the set of possible matchings being primitive, the set of possible information

structures is also primitive. The information structure in a Bayesian stable state is

merely in a special subset of the possible ones that are immune to updating. That is,

the outcome coincides with the primitive. It is important to address the theoretical

12Market state is an interim concept where the true type profile has been realized. Hence, it
makes little sense to compare Bayesian stable states at two different type profiles.

13Here, the partition profile is common across two states. We do not mean the strong sense that
firms have “common” partitions.
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question of the existence of Bayesian stable states, which has been done.

Third, Π̂ = Π is sufficient, but not necessary. In Example 2 (after the proof

of Proposition 1 below), the set of matched agents is the same across two Bayesian

stable states, but the partition profiles differ.

Fourth, when comparing two Bayesian stable states, more information can lead

to either more matched agents or less, as illustrated in Examples 3-4.14 Nevertheless,

regarding different partition profiles, we have at least one implication from Proposition

1: To favor rural hospitals (Roth, 1984), the social planner has to twist the information

that agents have so to avoid common (especially complete) information.

Proof of Proposition 1. We prove the result by contradiction. Suppose worker i is

matched under µ but unmatched under µ̂. Then by the individual rationality (IR) of

(µ, t,Π), worker i prefers µ(i) to being unmatched, i.e., aiµ(i)(t) > 0. Furthermore,

we have aiµ(i)(t
′) > 0 for all t′ ∈ KΠ(t); otherwise, the fact of IR would help firms

refine their information within KΠ(t), violating information stability of (µ, t,Π).

I:

J : ∅

i

µ(i)

µ̂(µ(i))

µ(µ̂(µ(i)))

. . .µ̂ µ µ̂ µ µ̂

≺

≺

≺

≺

We claim that firm µ(i) must be matched in (µ̂, t, Π̂). Otherwise, both i and

µ(i) are unmatched under µ̂. Moreover, by individual rationality of (µ, t,Π) and the

strictness of preferences, firm µ(i) enjoys a positive expected payoff in (µ, t,Π), i.e.,

Eβ
[
biµ(i)|Πµ(i)(t)

]
> 0. Now since firm µ(i) has the same amount of information in

14One may imagine a “maximal-domain” result like the following: Fix I, J , t, T , and β. As long
as Π̂ 6= Π, there exist a and b such that the sets of unmatched agents in two stable states differ.
However, we do not view this as sensible. Particularly, when we compare two Bayesian stable states,
Π̂ and Π are part of the states. Fixing Π̂ and Π but adjusting the market primitives a and b would
undermine the legitimacy of the stable states under comparison.
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(µ̂, t, Π̂) (particularly about worker i), and

Dµ̂,iµ(i) = {t′ ∈ T : aiµ(i)(t
′) > 0} ⊇ KΠ(t) = KΠ̂(t), (2)

she would expect a positive matching value with worker i, i.e.,

Eβ
[
biµ(i)|Π̂µ(i)(t) ∩Dµ̂,iµ(i)

]
= Eβ

[
biµ(i)|Πµ(i)(t)

]
> 0.

Therefore, (i, µ(i)) constitutes a blocking pair for (µ̂, t, Π̂), contradicting its stability.

Hence, firm µ(i) must be matched in (µ̂, t, Π̂).

Next, we claim that firm µ(i) prefers her partner under µ̂ to worker i, i.e.,

Eβ
[
bµ̂(µ(i)),µ(i)|Π̂µ(i)(t)

]
> Eβ

[
biµ(i)|Π̂µ(i)(t)

]
= Eβ

[
biµ(i)|Πµ(i)(t)

]
. (3)

Otherwise, we have

Eβ
[
biµ(i)|Π̂µ(i)(t)

]
> Eβ

[
bµ̂(µ(i)),µ(i)|Π̂µ(i)(t)

]
by the strictness of preferences. Since i is unmatched under µ̂ andDµ̂,iµ(i) in (2) reveals

no more information to firm µ(i) than Π̂µ(i)(t), we know that (i, µ(i)) constitutes a

blocking pair for (µ̂, t, Π̂), contradicting its stability. Hence, (3) holds. Furthermore,

we have

Eβ
[
bµ̂(µ(i)),µ(i)|Π̂µ(i)(t

′)
]
> Eβ

[
biµ(i)|Π̂µ(i)(t

′)
]
for all t′ ∈ KΠ̂(t);

otherwise, the fact of no blocking for (µ̂, t, Π̂) would help firms refine their information

within KΠ̂(t), violating information stability of (µ̂, t, Π̂).

Similarly, we can argue that worker µ̂(µ(i)) has to be matched under µ and he

prefers µ(µ̂(µ(i))) to µ(i) = µ̂(µ̂(µ(i))) at all type profiles in KΠ(t).

Continuing the arguments above would give us an alternative chain of workers

and firms, and the particular preference relations where every agent prefers her/his

successor to her/his predecessor at all type profiles in the common knowledge event

KΠ(t). Since I and J are both finite, and all agents along the chain are distinct, the

construction of the chain stops in finite steps. By construction, the last agent prefers

to be unmatched rather than being matched, violating the individual rationality
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of either (µ, t,Π) or (µ̂, t, Π̂). This is the contradiction we intended to have at the

beginning of this proof. Hence, there could not be a worker who is matched under µ

but unmatched under µ̂. The argument is symmetric if a firm is matched under µ

but unmatched under µ̂.

We close this section by three more examples, showing that without the sufficient

condition, the sets of unmatched agents may be the same and may also differ in

various possible ways.

Example 2 (The set of matched agents is the same, but Π̂ 6= Π).

Consider a matching market Γ, where I = {i, i′}, J = {j, j′}, the true type profile is

t∗, and the other ingredients of Γ are given as follows:

β aij bij aij′ bij′ ai′j bi′j ai′j′ bi′j′

t∗ 0.5 4 4 2 3 2 3 4 4

t 0.5 4 0 2 3 2 3 4 0

In words, T contains two possible type profiles t∗ and t, which are equally probable.

Matches (i, j) and (i′, j′) are desirable for all agents at t∗, whereas at t, firms prefer

matches (i′, j) and (i, j′).

Fix the true type profile t∗. We consider two states in market Γ, as follows:

(1) (µ, t∗,Π), where µ(i) = j′, µ(i′) = j, Πj = {{t∗, t}}, and Πj′ = {{t∗, t}}.

(2) (µ̂, t∗, Π̂), where µ̂(i) = j, µ̂(i′) = j′, Π̂j = {{t∗} , {t}}, and Π̂j′ = {{t∗} , {t}}.

It is straightforward to verify that both of them are Bayesian stable. Obviously, the

set of matched agents is the same, but Π̂ is strictly finer than Π.

Example 3 (More information lead to less matched agents).

Consider a matching market Γ, where I = {i, i′}, J = {j, j′}, the true type profile is

t∗, and the other ingredients of Γ are given as follows:
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β aij bij aij′ bij′ ai′j bi′j ai′j′ bi′j′

t∗ 0.5 4 4 2 3 2 3 −1 −1

t 0.5 4 0 2 3 2 3 −1 0

This is a slight modification of the market in Example 2, only in that (i′, j′) becomes

a really bad match for both i′ and j′.

Fix the true type profile t∗. We consider two states in market Γ, as follows:

(1) (µ, t∗,Π), where µ(i) = j′, µ(i′) = j, Πj = {{t∗, t}}, and Πj′ = {{t∗, t}}.

(2) (µ̂, t∗, Π̂), where µ̂(i) = j, µ̂(i′) = i′, Π̂j = {{t∗} , {t}}, and Π̂j′ = {{t∗} , {t}}.

It is straightforward to verify that both states are Bayesian stable. Obviously, Π̂ is

strictly finer than Π, and agents i′ and j′ who are matched in (µ, t∗,Π) are unmatched

in (µ̂, t∗, Π̂).

Example 4 (More information lead to more matched agents).

Consider a matching market Γ, where I = {i}, J = {j}, the true type profile is t∗,

and the other ingredients of Γ are given as follows:

β aij bij

t∗ 0.5 2 3

t 0.5 2 −4

Clearly, firm j prefers a match with worker i if she knows the true type t∗.

Fix the true type profile t∗. We consider two states in market Γ, as follows:

(1) (µ, t∗,Π), where µ(i) = i and Πj = {{t∗, t}}.

(2) (µ̂, t∗, Π̂), where µ̂(i) = j, and Π̂j = {{t∗} , {t}}.

It is straightforward to verify that both states are Bayesian stable. Obviously, Π̂ is

strictly finer than Π and agents i and j who are unmatched in (µ, t∗,Π) are matched

in (µ̂, t∗, Π̂).
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4 The lattice theorem

We recap the benchmark theorem in the complete-information setting first. In the

complete-information setting with t being the true type profile, for any two matchings

µ and µ̂, we define the following function on the set I ∪ J , which can also be seen as

operations on the set of all matchings. Let λ = µ ∨I µ̂, be defined by

λ(i) =

µ(i) if aiµ(i)(t) > aiµ̂(i)(t)

µ̂(i) otherwise
for all i ∈ I, and (4)

λ(j) =

µ̂(j) if bµ(j)j(t) > bµ̂(i)j(t)

µ(j) otherwise
for all j ∈ J. (5)

In a precisely similar way we can define the function ν = µ ∧I µ̂, which gives each

worker his less preferred firm and each firm her more preferred worker.

Theorem (Knuth, 1976, attributed to John Conwey). If µ and µ̂ are stable matchings,

then the functions λ = µ ∨I µ̂ and ν = µ ∧I µ̂ are both matchings. Furthermore, they

are both stable.

Example 1 illustrates that with incomplete information, the lattice theorem

fails. Particularly, the definition of ν = µ ∧I µ̂ leads to ν(j) = i, ν(j′) = i, and

ν(i) = i, which is not a matching.

We proceed to provide sufficient conditions to restore the lattice theorem. We

would like to keep the “common” information condition. Nevertheless, since new states

will be produced (unlike in Proposition 1, where we only compare two given states),

the condition Π̂ = Π becomes inadequate to restore the theorem. This is illustrated

in Example 5 (after Proposition 2 below). We borrow two intuitive conditions from

Liu (2020), each of which is sufficient (together with Π̂ = Π) for restoring the lattice

theorem.15

15Liu (2020) has another condition that involves independent “on-path” beliefs. Since the idea
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Assumption 1. aij (ti) = aij (t′i) for any ti, t′i ∈ Ti, i ∈ I, and j ∈ J .

Assumption 2. There exist functions g : I × Ti → R and h : I × J → R such that

aij (ti) = g (i, ti) + h(i, j) for any ti ∈ Ti, i ∈ I, and j ∈ J .

Assumption 2 is weaker than Assumption 1. For interpretations, if workers

care only about the observable identities of firms, then Assumption 1 is satisfied.

Moreover, in many classic adverse-selection models such as signaling and screening,

Assumption 2 is satisfied with aij (ti) = g (i, ti), i.e., a worker does not value which

firm he works for, but his own types may affect his costs of effort in working.

The following proposition is our restored lattice theorem. (In defining λ and ν,

the firms’ matches are determined by their expected matching values under Π.)

Proposition 2. Let (µ, t,Π) and (µ̂, t, Π̂) be two Bayesian stable states. If Assumption

2 holds and Π̂ = Π, then both λ = µ ∨I µ̂ and ν = µ ∧I µ̂ are matchings; moreover,

both (λ, t,Π) and (ν, t,Π) are Bayesian stable states.

There are four remarks. First, again, to have the lone-wolf theorem, agents do

not need to have complete information; instead, “common” information is sufficient

in those markets satisfying Assumption 2. In this sense, Proposition 2 generalizes

Conway’s theorem in those markets. Furthermore, in the more general setting with

incomplete information, the lattice theorem actually does not fail. Instead, it holds

more generally: If we stratify the set of Bayesian stable states according to the

information structure Π, then the lattice theorem holds in every stratum. The

complete-information lattice theorem is only one of them.

Second, one may suspect that the conditions in Proposition 2 is so strong that

it may push us back to the complete-information case. However, the remark after

of adopting this third one is pretty the same as adopting the other two, and since we prefer not
to introduce “on-path” beliefs in this paper, we leave it to interested readers to restore the lattice
theorem under Liu’s third condition; see Liu (2020, Proposition 5 on page 2647).
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Example 5 says that the proposition is indeed more general: A slight modification of

Example 5 shows that we could apply the proposition to a complete-information stable

state (µ, t,Π) and a Bayesian stable state (µ̂, t, Π̂) which is not complete-information

stable.

Third, since we have introduced both the join between two matchings as in

(4)-(5) and the join between two partitions in defining information stability, one may

wonder what the combined effect could be. For example, if two Bayesian stable state

have different partition profiles, can we obtain a Bayesian stable state by taking the

join of matchings and the join (or meet) of partitions? We think the operators on

different partitions may not help to restore the lattice theorem. To wit, we consider

Example 1 again. The failure of the lattice property arises because of the failure

of the lone-wolf property.16 So a proper matching cannot arise, before we worry

about stability. By Proposition 1, we need common information to first guarantee the

lone-wolf property before we study the lattice property. Beyond common information,

Examples 1, 3 and 4 indicate that our knowledge about the lone-wolf property is

limited, which is itself an open question before we study the lattice property.

Fourth, following the discussion in the previous remark, can we focus on the

structure of the set of Bayesian stable states with a common matching (and different

partition profiles)? In the belief-free setting studied by Liu et al. (2014) and generalized

by Chen and Hu (2020), if a state (µ, t,Π) is (incomplete-information) stable and

Π̂ is coarser than Π, then the state (µ, t, Π̂) is “essentially stable” in the sense that

(µ, t,H l(Π̂)) is never blocked for any l = 0, 1, 2, . . . , and thus (incomplete-information)

stable for some l. In the Bayesian setting, this is no longer true. Consider the simple

16Generally, the lone-wolf property may be a necessary condition for the lattice property. For a
quick proof in a generic case, consider an unbalanced market with more firms than workers. Suppose
every firm-worker pair is mutually acceptable. Then all stable matchings must have workers fully
matched. If the sets of unmatched firms differ in two stable matchings, then the firm-join of the two
matchings is not a matching, before we are concerned with any stability issue.
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Example 4 but modify it by (1) specifying t as the true type and (2) replacing −4 with

−2. Then (µ, t, Π̂) with µ(i) = i and Π̂j = {{t∗}, {t}} is Bayesian stable. However,

the state (µ, t,Π), where Πj = {{t∗, t}} is coarser than Π̂j, is blocked by (i, j).

Two corollaries are immediate:

Corollary 1. Suppose Assumption 2 holds. Then for every Π, if the set of Bayesian

stable states with common information Π, i.e.,

S(t,Π) :=
{

(µ̂, t, Π̂) : (µ̂, t, Π̂) is Bayesian stable and Π̂ = Π
}

is nonempty, then it admits a worker-optimal state and a firm-optimal state.

Corollary 2. Suppose Assumption 2 holds. If (µ, t,Π) and (µ̂, t,Π) are two Bayesian

stable states, then all workers like (µ, t,Π) at least as well as (µ̂, t,Π) if and only if

all firms like (µ̂, t,Π) at least as well as (µ, t,Π).

Proof of Proposition 2. We prove the claim for λ = µ ∨I µ̂; that for ν is symmetric.

Part 1. λ is a matching. It suffices to show that λ(i) = j if and only if λ(j) = i.

To prove the “only-if” direction, suppose that λ(i) = j and, without loss of

generality, that j = µ(i). If µ(i) = µ̂(i), λ(i) = j automatically implies λ(j) = i. So

we suppose µ(i) 6= µ̂(i).

By the definition of λ, we have

aij(t) > aiµ̂(i)(t), (6)

which implies that j ∈ J . Then by Π̂ = Π and Proposition 1, we have µ̂(i) ∈ J as

well. By Assumption 2, we rewrite (6) as

g (i, ti) + h(i, j) > g (i, ti) + h(i, µ̂(i)),

which then implies Dµ̂,ij is nonempty (which contains t) and thus Dµ̂,ij = T .

We claim that

Eβ
[
bij|Π̂j(t)

]
< Eβ

[
bµ̂(j)j|Π̂j(t)

]
. (7)
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Otherwise, the strictness of preferences imply that

Eβ
[
bij|Π̂j(t) ∩Dµ̂,ij

]
= Eβ

[
bij|Π̂j(t)

]
> Eβ

[
bµ̂(j)j|Π̂j(t)

]
= Eβ

[
bµ̂(j)j|Π̂j(t) ∩Dµ̂,ij

]
.

Then (i, j) constitutes a blocking pair for (µ̂, t, Π̂), contradicting its stability. Hence,

(7) holds and λ(j) = i follows.

The “if” direction is adopted from Roth and Sotomayor (1990, page 36), which

is included here for completeness.17 Let I ′ be the set of matched workers under λ,

i.e.,

I ′ = {i : λ(i) ∈ J} = {i : µ(i) ∈ J or µ̂(i) ∈ J}

and J ′ be the set of matched workers under λ, i.e.,

J ′ = {j : λ(j) ∈ I} = {j : µ(j) ∈ I and µ̂(j) ∈ I} .

Three facts are useful:

(1) λ (I ′) is contained in J ′, since, by the only-if direction, λ(i) = j implies λ(j) = i.

(2) λ (I ′) is the same size as I ′, since λ(i) = λ (i′) = j implies i = i′ = λ(j).

(3) I ′ contains µ (J ′), which is the same size as J ′, since J ′ is only a subset of

matched firms under µ whereas I ′ contains all matched workers under µ.

Therefore, λ (I ′) and J ′ are the same size and thus λ (I ′) = J ′. Now suppose λ(j) = i.

Then j ∈ J ′. Since λ (I ′) = J ′, there exists i′ ∈ I ′ such that λ(i′) = j. By the only-if

direction, λ(j) = i′, which implies i′ = i and thus λ(i) = j.

Part 2. (λ, t,Π) is a Bayesian stable state. Obviously, (λ, t,Π) is individually rational

as both (µ, t,Π) and (µ̂, t, Π̂) are.

17The identical argument applies because this step does not involve incomplete information.
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We show there is no blocking for (λ, t,Π) by contradiction. Suppose (i′, j′) is a

blocking pair for (λ, t,Π), i.e.,

ai′j′(t) > ai′λ(i′)(t) and (8)

Eβ
[
bi′j′|Π̂j′(t) ∩Dλ,i′j′

]
> Eβ

[
bλ(j′)j′|Π̂j′(t) ∩Dλ,i′j′

]
. (9)

If λ(i′) = i′, then i′ is unmatched in both (µ, t,Π) and (µ̂, t, Π̂), which implies

notationally that λ(i′) = µ(i′) = µ̂(i′). Then conditions (8)-(9) would say that either

(µ, t,Π) is blocked, when λ(j′) = µ(j′), or (µ̂, t, Π̂) is blocked, when λ(j′) = µ̂(j′).

This contradicts to the Bayesian stability of (µ, t,Π) or (µ̂, t, Π̂), respectively.

If λ(i′) ∈ J , then by Π̂ = Π and Proposition 1, we have µ(i′) ∈ J and µ̂(i) ∈ J .

By Assumption 2, we rewrite (8) as

g (i′, ti′) + h(i′, j′) > g (i′, ti′) + h(i′, µ(i′)), and (10)

g (i′, ti′) + h(i′, j′) > g (i′, ti′) + h(i′, µ̂(i′)). (11)

Therefore, t ∈ Dµ,i′j′ and t ∈ Dµ̂,i′j′ , which imply, respectively, that Dµ,i′j′ = T and

Dµ̂,i′j′ = T . Consider four cases:

(1) λ(i′) = µ(i′) and λ(j′) = µ(j′).

(2) λ(i′) = µ̂(i′) and λ(j′) = µ̂(j′).

(3) λ(i′) = µ(i′) and λ(j′) = µ̂(j′).

(4) λ(i′) = µ̂(i′) and λ(j′) = µ(j′).

In the first case, conditions (8)-(9) indicate that (µ, t,Π) is blocked by (i′, j′), a

contradiction. Similarly, in the second case, we can derive a contradiction to the

stability of (µ̂, t, Π̂). In the third case, conditions (11) and (9) indicate that (µ̂, t, Π̂)

is blocked, a contradiction. Similarly, in the last case, we can derive a contradiction

to the stability of (µ, t,Π) by conditions (10) and (9).

Now we verify the information stability requirement for (λ, t,Π). Since (µ, t,Π)
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and (µ̂, t, Π̂) are Bayesian stable, we have, respectively,

Nµ,Π ⊇ KΠ(t) and Nµ̂,Π̂ ⊇ KΠ̂(t).18 (12)

We have seen in the above argument that if (i′, j′) is a blocking pair for (λ, t,Π), then

it has to be a blocking pair for either (µ, t,Π) or (µ̂, t, Π̂). By the identical argument,

if (i′, j′) is a blocking pair for (λ, t′,Π), then it has to be a blocking pair for either

(µ, t′,Π) or (µ̂, t′, Π̂). Thus, we have

T \Nλ,Π ⊆ [T \Nµ,Π] ∪ [T \Nµ̂,Π̂].

Therefore, we know that

Nλ,Π ⊇ Nµ,Π ∩Nµ̂,Π̂ ⊇ KΠ(t),

where the second inclusion follows from (12) and the condition Π̂ = Π. Hence, (λ, t,Π)

satisfies information stability, and thus is Bayesian stable.

The following example shows that the common information condition alone is

insufficient to restore the lattice theorem.

Example 5 (Failure of the lattice theorem when Π̂ = Π).

Consider a matching market Γ, where I = {i1, i2, i3, i4, i5}, J = {j1, j2, j3, j4, j5}, the

true type profile is t∗, T = {t∗, t}, β(t∗) = β(t) = 1
2
, and the matchings values are

given as follows, where all omitted matching values are −1:

18It is straightforward to verify that this set-inclusion condition is equivalent to our information
stability requirement in Definition 3.
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aij(t
∗) bij(t

∗)

aij(t) bij(t) j1 j2 j3 j4 j5

i1
3 6 5 4 1 6 7 10

3 6 5 4 1 6 4 6

i2
5 4 3 2 1 4

5 -2 3 2 1 4

i3
5 2 3 6 1 2

5 2 3 6 1 2

i4
7 11 8 9

7 11 8 9

i5
8 9 7 11

8 9 7 11

As indicated by the matching values, Γ contains two mostly separated sub-markets,

i.e., the larger Γl with I l = {i1, i2, i3} and J l = {j1, j2, j3}, and the smaller Γs with

Is = {i4, i5} and Js = {j4, j5}.

The larger market Γl has a unique complete-information stable matching µ, at

the true type profile t∗:

µ(i1) = j1, µ(i2) = j3, µ(i3) = j2.

An alternative matching µ̂ that interests us is as follows:

µ̂(i1) = j2, µ̂(i2) = j3, µ̂(i3) = j1.

Given the true type profile being t∗, µ̂ admits a unique blocking pair (i2, j1). The

smaller market Γs has two complete-information stable matchings, which we abuse

notations and still denote by µ and µ̂:

µ(i4) = j5, µ(i5) = j4; and

µ̂(i4) = j4, µ̂(i5) = j5.

The two sub-markets are only connected through the pair i1 and j4, i.e., any other
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match between an agent from Γl and an agent from Γs is not individually rational.

Fix the true type profile t∗. We consider two states in market Γ, as follows:

(1) (µ, t∗,Π), where Πj = {{t∗, t}} for all j ∈ J .

(2) (µ̂, t∗, Π̂), where Π̂j = {{t∗, t}} for all j ∈ J .

Obviously, both states are individually rational.

Claim 1. (µ, t∗,Π) is Bayesian stable.

Proof. We verify that neither (µ, t∗,Π) nor (µ, t,Π) is blocked, and thus (µ, t∗,Π) is

Bayesian stable. The only potential blocking pair to consider is (i1, j4). However,

since

Dµ,i1j4 = {t′ ∈ T : ai1j4 > ai1j1} = T,

we know that

Eβ [bi1j4|Πj4(t
′′) ∩Dµ,i1j4 ] =

1

2
· 6 +

1

2
· 10

< 9

= Eβ [bi5j4|Πj4(t
′′) ∩Dµ,i1j4 ]

for both t′′ ∈ T . Therefore, neither (µ, t∗,Π) nor (µ, t,Π) is blocked. Then we have

Nµ,Π = T and thus (µ, t∗,Π) is Bayesian stable.

Claim 2. (µ̂, t∗, Π̂) is Bayesian stable.

Proof. We verify that neither (µ̂, t∗, Π̂) nor (µ̂, t, Π̂) is blocked, and thus (µ̂, t∗, Π̂) is

Bayesian stable. There are two potential blocking pairs to check: (i2, j1) and (i1, j4).

For (i2, j1), we have

Dµ̂,i2j1 = {t′ ∈ T : ai2j1 > ai3j1} = T.
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Then

Eβ [bi2j1|Πj1(t
′′) ∩Dµ̂,i2j1 ] =

1

2
· 4 +

1

2
· (−2)

< 2

= Eβ [bi3j1|Πj1(t
′′) ∩Dµ̂,i2j1 ]

for both t′′ ∈ T . Thus, (i2, j1) is neither a blocking pair for (µ̂, t∗, Π̂) nor for (µ̂, t, Π̂).

For (i1, j4), we have

Dµ̂,i1j4 = {t′ ∈ T : ai1j4 > ai1j2} = {t∗}.

However, bi1j4(t∗) = 10 < 11 = bi4j4(t
∗). Therefore, (i1, j4) is neither a blocking pair

for (µ̂, t∗, Π̂) nor for (µ̂, t, Π̂). Then we have Nµ̂,Π̂ = T and thus (µ̂, t∗, Π̂) is Bayesian

stable.

However, if we derive λ = µ ∨I µ̂ as

λ(i1) = j2, λ(i2) = j3, λ(i3) = j1, λ(i4) = j5, λ(i5) = j4,

the state (λ, t∗,Π) is no longer stable. Particularly, since

Dλ,i1j4 = {t′ ∈ T : ai1j4 > ai1j2} = {t∗}

and

bi1j4(t
∗) = 10 > 9 = bi5j4(t

∗),

we know that (λ, t∗,Π) is blocked by (i1, j4). This completes the example.

A key feature is as follows: There is a particular blocking pair (i1, j4) to

consider. In state (µ, t∗,Π), j4 wants to be rematched to i1 only at t∗, but Dµ,i1j4 is

uninformative in distinguishing t∗ from an alternative t. In state (µ̂, t∗, Π̂), although

Dµ̂,i1j4 is informative, j4 does not want to be rematched to i1. Finally, in the derived

state (λ, t∗,Π) where λ = µ ∨I µ̂, Dλ,i1j4 is informative, and j4 wants rematching; so

(λ, t∗,Π) is blocked. Assumption 2 helped in excluding such a case.

Example 5 also serves as an illustration of Proposition 2, if we replace all
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matchings values between i1 and j4 by −1. Particularly, the proposition says strictly

more than the complete-information lattice theorem: In the revised example, µ is a

complete-information stable matching, neither µ̂ nor λ is complete-information stable,

but both (µ̂, t∗, Π̂) and (λ, t∗, Π̂) are Bayesian stable states.

5 Concluding remarks

Here are some potential future directions, though this is by no means exhaustive:

(1) Transferable utility. We have focused on the non-transferable utility setting in

order to isolate the phenomena initiated by incomplete information, without

confounding them with the role of transfers. This facilitates the comparison

between our results and those following Gale and Shapley (1962).

However, the transferable utility setting is worth investigating for at least two

reasons: First, the setting itself has a broad range of applications; see Shapley

and Shubik (1971) and the subsequent literature. Second, with incomplete

information, transfers may serve as a screening tool in coalitional deviations.

For example, if the matching values a and b are increasing in types, then a

worker being willing to accept a low wage indicates that he is likely of a high

type; see, e.g., Liu et al. (2014).

In most of our examples, the workers’ matching values are independent of their

types, which implies that the phenomena uncovered by the examples would carry

over to the transferable utility setting. Therefore, these examples may serve

as natural starting points to investigate matching markets with transferable

utility. Moreover, since Assumption 1 or 2 enables Liu (2020) to apply the

duality approach, the generalized lattice theorem probably can carry over, as

in Shapley and Shubik (1971).
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(2) Matching with contracts. Standard structural results can be established in the

general framework of matching with contracts (Hatfield and Milgrom, 2005)

which incorporates Gale and Shapley (1962), Kelso and Crawford (1982) and

etc. For instance, the lone-wolf theorem can be strengthened to the rural-

hospital theorem (Roth, 1984). More precisely, in the matching between interns

from medical schools and hospitals, any hospital that does not fill its quota at

some stable matching is assigned precisely the same set of students at every

stable matching. Hatfield and Milgrom (2005) also proves a very general lattice

theorem. A first difficulty in this direction may arise in defining Bayesian stable

states in the many-to-one setting, even with responsive firm preferences.

(3) Extreme matchings. Many structural properties of stable matchings and compar-

ative statics results are built upon the extreme matchings, i.e., worker-optimal

or firm-optimal stable matchings. For example, Roth (1982) shows that the

worker-optimal stable matching is weakly Pareto optimal for the workers among

all individually rational matchings.

Since we have established the lattice theorem with incomplete information

(Proposition 2), and since the opposition of interests between the two sides of

the market (Roth and Sotomayor, 1990, Theorem 2.13, attributed to Knuth)

and the existence of extreme matchings (Gale and Shapley, 1962) can be viewed

as corollaries of the lattice theorem, it would be a natural exercise to replicate

these results in the incomplete-information setting.

(4) Belief-free settings. Our examples and results may also carry over to the

belief-free settings studied in Liu et al. (2014) and Chen and Hu (2020, 2023).

Furthermore, the set of stable states in the belief-free settings has an additional

structural property in terms of information structure: If (µ, t,Π) and (µ, t, Π̂)

are two stable states, then (µ, t,Π ∧ Π̂) is essentially stable. This is a corollary

of Proposition 3 in Chen and Hu (2023).
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