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Chen and Hu (2024) proposes a concept of Bayesian stability for matching with

incomplete information. They also invoke the result of Chen and Hu (2020) to provide a

foundation for their solution concept. Particularly, assuming in job matching that firms

can observe the type of their employees, then starting from an arbitrary market state,

a random learning-blocking path converges to a Bayesian stable state with probability

one. In this companion note, we document how one could prove the following result

without assuming observability, which strengthens Corollary 1 in Chen and Hu (2024).

Proposition. Suppose payments permitted in the market are integers. Then starting

from an arbitrary initial market state,

(1) there exists a finite learning-blocking path that leads to a Bayesian stable state.

(2) the random learning-blocking path converges with probability one to a Bayesian

stable state.

We omit the model setup and the formulation of market states and learning-

blocking paths, which are identical as in the aforementioned papers (up to notation

replacement). However, the proof we present below are rigorous and comprehensive.
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The Proposition is proved by modifying the proof of Theorem 2 in Chen and Hu

(2020) (henceforth, CH20). For statement (1), the proving idea is to either (a) construct

an increasing sequence of subsets of agents, where each subset is internally stable in

the sense that it does not contain a blocking pair, or (b) identify a strict refinement

of some information partition. Since both the number of agents and and the number

of type profiles are finite, the internally stable set cannot be enlarged indefinitely and

the information partitions cannot be refined indefinitely. Hence, the construction must

stop after finitely many steps, at a Bayesian stable state. Statement (2) is implied by

statement (1); see the argument on page 43 of CH20.

We highlight the differences from CH20’s proof before presenting the details.

Particularly, here we (i) adopt the Bayesian setting and (ii) drop the observability

assumption. In a Bayesian setting without observability, if a worker and a firm were

matched with each getting a strictly positive expected payoff, but both of them are

currently unmatched, then they may or may not be willing to form a blocking coalition

to recover the previous partnership. The reason is that the firm’s belief may be updated,

under which she may no longer expect a positive payoff. This phenomenon is new

but we argue that being unwilling to recover the previous relationship indicates strict

information refinement of the firm, which still fits into case (b) of the idea in CH20.

Moreover, in attempting to conduct the routine construction of a learning-blocking

path, CH20 show that, if some “unexpected” blocking pair (Case 3 on page 46) emerges,

it must be the case that the firm has not known the precise type of the worker; then

by matching with the worker, she can observe his type and thus strictly refine her

information. Without observability, we show that, in an “unexpected” blocking (Case 3

on page 5), the firm’s willingness to get rematched must be attributed to strictly more

refined information via the worker’s (hypothetical) willingness.

In addition to these two key arguments, there are a few minor modifications to

CH20’s proof. In what follows, we highlight all arguments that are essentially different

from CH20 in color purple. For expositional simplicity, we omit the realized type profile

t and the prefix “Bayesian”, which are fixed throughout the proof.
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Proof of the Proposition
The proof of convergence for statement (1) starts with the following simple lemma,

which corresponds to Lemma 1 in CH20 but requires a different proof (without relying

on observability). Statement (2) is a corollary of statement (1); see page 43 of CH20.

Lemma 1. Suppose that a state (µ,p,Π) admits no blocking pair. Then, there exists a

finite learning-blocking path to either (i) a stable state or (ii) a state which admits a

blocking pair and has a partition profile that is strictly finer than Π.

Proof. Let Π0 := Π and Πk := Hµ,p(Πk−1) for every k ≥ 1. Observe that Πk is

increasingly (weakly) finer in k. For each k ≥ 1, there are three mutually exclusive

cases which may happen: (i) Πk = Πk−1, (ii) Πk 6= Πk−1 and the state (µ,p,Πk) is

blocked, and (iii) Πk 6= Πk−1 and the state (µ,p,Πk) is not blocked.

Since our starting point is a state (µ,p,Π) that is not blocked, once case (i)

happens, we must have a stable state. Then we are done according to the statement of

the lemma. Similarly, once case (ii) happen, we are done. Therefore, the only possible

reason for the lemma to fail is that case (iii) happens repeatedly, where each time the

information structure Πk−1 is strictly refined to Πk. However, since we have only finitely

many firms and each firm’s partition is over the finite set T , the firms’ partition profile

cannot be strictly refined indefinitely. Hence, case (iii) can be triggered only finitely

many times before reaching either case (i) or case (ii).

To provide a constructive proof of the Proposition, we consider two cases: the

initial state, denoted by (µ0,p0,Π0), admits a blocking pair or otherwise. If the initial

state admits no blocking pair, then by Lemma 1, there is a finite learning-blocking path

to either a stable state or a state with a blocking pair and a partition profile strictly

finer than Π0. Hence, we only need to focus on the case where a state admits a blocking

pair.

Definition 1. A set of agents A ⊂ I ∪ J is internally stable under state (µ,p,Π) if

the following hold:
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(i) Agents in A are only matched with agents in A.

(ii) The set A does not contain two agents who form a blocking pair for (µ,p,Π).

(iii) Moreover, every matched agent in A has a strictly positive expected payoff.

Pick an internally stable set A at state (µ0,p0,Π0). If (µ0,p0,Π0) admits a

blocking pair (̄i, j̄), then either one or both of agents ī and j̄ are outside A. We deal

with the case where exactly one agent is in A in Lemma 2 below and then the other case

in the main proof of the Proposition. To be precise, we show that we can construct

a finite learning-blocking path which leads to a state (µ,p,Π) under which either (a)

we obtain a strict superset of A which is still internally stable; or (b) there is a firm j

such that Πj is strictly finer than Π0
j . The former case resembles Roth and Vande Vate

(1990) (henceforth, RV), and the latter is specific to the incomplete-information setting.

Lemma 2. Let A0 be a set of agents which is internally stable under a state (µ0,p0,Π0).

Suppose that worker i0 /∈ A0 (resp. firm j0 /∈ A0) forms a blocking pair for (µ0,p0,Π0)

with a firm (resp. a worker) in A0. Then, starting from state (µ0,p0,Π0), there exists

a finite learning-blocking path to a state (µ,p,Π) under which either (a) the internally

stable set is expanded, i.e., A0 ∪ {i0} (resp. A0 ∪ {j0}) is internally stable; or (b) there

exists a firm j whose information partition is strictly refined, i.e., Πj is strictly finer

than Π0
j .

To prove Lemma 2, we will explicitly construct a finite learning-blocking path

which either (a) outputs a state such that the internally stable set is expanded in the

sense of set inclusion; or (b) identifies a coalition (i, j, p), satisfying which leads to a

strictly finer partition for firm j.1 The lemma is proved using what we call the Worker-

Adding (Firm-Adding) Algorithm. The algorithm resembles the argument of RV

by trying to expand the internally stable set but differs in an essential manner, i.e., the

internally stable set may shrink to an empty set due to strict information updating.

Proof of Lemma 2. Consider the case of a worker i0 /∈ A0 who forms a blocking pair

for state (µ0,p0,Π0) with a firm in A0. To prove the claim, we input state (µ,p,Π) =

1Lemma 3 of CH20 is not used, but a modified idea is used in the last step of the current proof.
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(µ0,p0,Π0), A = A0, worker α = i0, and (i, j; p) = (∅, ∅; 0) into the following Worker-

Adding Algorithm. The case of a firm j0 /∈ A0 who forms a blocking pair with a

worker in A0 can be similarly proved by switching the roles of worker and firm. In

describing the algorithm, for each input value x of a variable, we denote by x′ the

updated value of x.

The Worker-Adding Algorithm

Start. Input state (µ,p,Π), a (possibly empty) subset A of I ∪ J , worker α, and

(i, j; p) where i 6= α. Consider four mutually exclusive cases:

Case 1. There exists a blocking coalition for (µ,p,Π) which includes worker α and

some firm in A.

Pick an arbitrary blocking coalition (α, j̄; p̄) with firm j̄ ∈ A for (µ,p,Π). Consider

two mutually exclusive cases:

Subcase 1.1. (i, j; p) constitutes a blocking coalition for (µ,p,Π) ↑(α,j̄;p̄).

Set (µ′,p′,Π′) =
(
(µ,p,Π) ↑(α,j̄;p̄)

)
↑(i,j;p), A′ = A ∪ {α}, worker α′ = α, and

(i′, j′; p′) = (µ−1 (j̄) , j̄;pµ−1(j̄),j̄). Go to Start.

Subcase 1.2. (i, j; p) does not constitute a blocking coalition for (µ,p,Π) ↑(α,j̄;p̄).

Set (µ′,p′,Π′) = (µ,p,Π) ↑(α,j̄;p̄) and A′ = ∅. Go to end.

Case 2. There exists no blocking coalition for (µ,p,Π) which includes worker α and a

firm in A but there exists a blocking coalition for (µ,p,Π) which includes worker i and

some firm in A.

Pick an arbitrary blocking coalition (i, j̄; p̄) with firm j̄ ∈ A for (µ,p,Π). Set

(µ′,p′,Π′) = (µ,p,Π) ↑(i,j̄;p̄), A′ = A, worker α′ = i, and (i′, j′; p′) = (µ−1 (j̄) , j̄;pµ−1(j̄),j̄).

Go to Start.

Case 3. There exists no blocking coalition for (µ,p,Π) which includes either worker α or

worker i and a firm in A. However, there exists a blocking coalition (̄i, j̄; p̄) for (µ,p,Π)

with both the firm and the worker in A.

Set (µ′,p′,Π′) = (µ,p,Π) ↑(̄i,j̄;p̄) and A′ = ∅. Go to end.
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Case 4. There exists no blocking coalition for (µ,p,Π) which includes a pair of agents

in A ∪ {α}.

Set (µ′,p′,Π′) = (µ,p,Π) and A′ = A. Go to end.

End. Output A := A′ and (µ,p,Π) := (µ′,p′,Π′).

We proceed to explain the algorithm, and then complete the detailed arguments.

The algorithm keeps track of the following variables to be updated in each step:

a state (µ,p,Π), a set A of agents, a worker α, and a “potential blocking coalition

(i, j; p).” In each step, exactly one of the four cases will be triggered. Case 1 says that

worker α has the first priority to block the state: as long as he still wants to do so, we

update the state by satisfying one such blocking coalition, say matching worker α and

firm j̄. At the same time, we check whether the potential blocking coalition (i, j; p) is

indeed a blocking coalition for the state updated from satisfying α. If that is the case,

we satisfy (i, j; p), update A to A ∪ {α}, and update the “potential blocking coalition”

to (i′, j′; p′) where j′ becomes firm j̄, and i′ and p′ become the employee of firm j̄ and

the wage which firm j̄ paid to him before she left for worker α, respectively. If not, the

algorithm terminates and outputs the updated state and ∅. Hence, when Case 1 is

triggered at a state in which firm j and worker α are matched, the “potential blocking

coalition” (i, j; p) is actually firm j’s match immediately before she is matched with

worker α.

Unless Subcase 1.2 is triggered, in which case we identify a strict refinement of

firm j’s partition (to be proved below), we keep triggering Subcase 1.1 until there is no

more blocking coalition which involves worker α. Then, we turn to trigger Case 2 if

there is a blocking coalition which involves worker i. In this case, we update the state

by satisfying one such blocking coalition, say matching worker i and firm j̄; moreover,

we let worker i become the new worker α and update the “potential blocking coalition”

to (i′, j′; p′) where j′ becomes firm j̄, and i′ and p′ become the employee of firm j̄ and

the wage which firm j̄ paid to him before she left for worker α, respectively. In addition

to Subcase 1.2, the algorithm will stop once there is no blocking coalition which involves

either worker α or worker i. Then, the algorithm outputs the updated state and ∅ if
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there is still a blocking coalition with two agents both in A; otherwise, it outputs the

state and the set A of the final step.

First of all, we claim that the algorithm produces a learning-blocking path. This

is obviously true because along the algorithm, the state is updated only by satisfying

blocking coalitions.

Secondly, we claim that whenever Subcase 1.2 is triggered, firm j’s partition must

be strictly refined. Suppose to the contrary that firm j’s partition has never been refined

along the learning-blocking path starting from (µ0,p0,Π0). Then we proceed to argue

that (i, j; p) must be a blocking coalition for (µ,p,Π) ↑(α,j̄;p̄), which is a contradiction.

To see this, we consider two possibilities. For the initial input (i, j; p) = (∅, ∅; 0) or

the notational case (i, j; p) = (∅, j; 0), (i, j; p) being a blocking coalition is a dummy

condition. If i ∈ I and (i, j; p) is updated after either Subcase 1.1 or Case 2 is triggered,

worker i is unmatched under (µ,p,Π) ↑(α,j̄;p̄); moreover, firm j is also unmatched under

(µ,p,Π) ↑(α,j̄;p̄) since she has just been dumped by α. Since every matched agent in

A has a strictly positive payoff (and remains so along the path as long as her/his

information is not updated), we know that i and j both prefer to be rematched with

each other at p rather than standing alone, i.e., (i, j; p) must be a blocking coalition

for (µ,p,Π) ↑(α,j̄;p̄). This contradicts the underlying Subcase 1.2, so firm j’s partition

under (µ,p,Π) ↑(α,j̄;p̄) has to be strictly finer than Π0
j .

Thirdly, we claim that the constructed path is finite. Since strict information

refinement can happen only finitely many times, without loss of generality, we suppose

there is no strict information updating in this paragraph. By discreteness of payments,

some firm’s payoff is strictly increased when Subcase 1.1 or Case 2 is triggered; moreover,

a firm’s payoff never decrease in the algorithm unless she is firm j in Subcase 1.1, in

which case her payoff drops after a temporary increase and, at the same time, some

other firm’s payoff must strictly increase. Since we have only finitely many firms in A,

the constructed path can be infinite only if some firm’s payoff is improved indefinitely.

However, this contradicts individual rationality of workers and that the surpluses are

uniformly bounded across all matches.
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Finally, if the path terminates by triggering Case 4, then A = A0∪{i0} is internally

stable.2 Hence, it suffices to argue that when the path terminates by triggering Case 3,

the updated partition of the blocking firm j̄ in Case 3 must be strictly finer than her

partition under the initial state. To see this, we denote by
{(
αk, ik

)}K
k=1

the sequence

of workers who serve in order the role of worker α and the role of worker i in Case 2 up

until Case 3 is triggered. Let k∗ ≤ K − 1 be the maximal k such that ī = αk (k∗ := 0 if

ī has never served the role of worker α). Hence, worker ī is neither αk nor ik for every

k ≥ k∗ + 1.

Since only worker α or worker i changes his partner or wage in the algorithm

before it terminates, worker ī remains matched with the firm and wage which he settled

as worker αk∗ (or at the initial state (µ0,p0,Π0) if k∗ = 0) ; denote that particular

state (µ,p,Π) in the underlying Case 2 by (µ∗,p∗,Π∗). Case 2 must be triggered when

worker αk∗+1 succeeds worker ī to become a new worker α and when there was no more

blocking coalition which involves worker ī. In particular, (̄i, j̄; p̄) was not a blocking

coalition for (µ∗,p∗,Π∗). Recall that the blocking conditions of (̄i, j̄; p̄) for (µ∗,p∗,Π∗)

are:

aīj̄(t) + p̄ > aīµ∗ (̄i)(t) + p∗īµ∗ (̄i) and (1)

Eβ0

[
bīj̄
∣∣Π∗j̄(t) ∩D∗c]− p̄ > Eβ0

[
bµ∗(j̄)j̄

∣∣Π∗j̄(t) ∩D∗c]− p∗µ∗(j̄)j̄, (2)

where

D∗c :=
{
t′ ∈ T : aīj̄(t

′) + p̄ > aīµ∗ (̄i)(t
′) + p∗īµ∗ (̄i)

}
. (3)

Since (̄i, j̄; p̄) is not a blocking coalition for state (µ∗,p∗,Π∗), either (1) or (2-3) fails.

Denote the state in Case 3 which admits the blocking coalition (̄i, j̄; p̄) by

2In case the output state admits some matched agent in A having an expected payoff of zero, as
long as the starting point is internally stable (every matched agent in A has a strictly positive expected
payoff), this zero matched payoff must be a result of strict information updating, fitting into case
(b) of the lemma. Thus, it is without loss of generality to assume that all matched agents in A have
strictly positive expected payoffs.
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(µ†,p†,Π†). The blocking conditions of (̄i, j̄; p̄) for (µ†,p†,Π†) are:

aīj̄(t) + p̄ > aīµ† (̄i)(t) + p†
īµ† (̄i)

and (4)

Eβ0

[
bīj̄
∣∣Π†

j̄
(t) ∩D†c

]
− p̄ > Eβ0

[
bµ†(j̄)j̄

∣∣Π†
j̄
(t) ∩D†c

]
− p†

µ†(j̄)j̄
, (5)

where

D†c :=
{
t′ ∈ T : aīj̄(t

′) + p̄ > aīµ† (̄i)(t
′) + p†

īµ† (̄i)

}
. (6)

Since worker ī remains matched as at (µ∗,p∗,Π∗) (where he settled as worker αk∗) even

when the state becomes (µ†,p†,Π†), condition (4) is identical to (1), and D†c identical to

D∗c . Then (̄i, j̄; p̄) being a blocking coalition for (µ†,p†,Π†) but not (µ∗,p∗,Π∗) implies

that condition (5-6) holds but (2-3) fails.

If Π†
j̄
is already strictly finer than Π∗j̄ , we are done. Now suppose Π†

j̄
= Π∗j̄ . Then

Π†
j̄
(t) ∩D†c = Π∗j̄ ∩D

∗
c and the left-hand side of (5) is identical to that of (2). A further

implication of Π†
j̄

= Π∗j̄ is that in all coalitional deviations that firm j̄ experienced from

(µ∗,p∗,Π∗) to (µ†,p†,Π†), if any, none of those blocking workers’ willingness (or any

other observations) has provided any information to help firm j refine her partition.

We claim that Π†
j̄
(t) ∩D†c 6= Π∗j̄ . Suppose to the contrary that they are the same. Then

the right-hand sides of (5) and (2) can be compared as follows:

Eβ0

[
bµ†(j̄)j̄

∣∣Π†
j̄
(t)
]
− p†

µ†(j̄)j̄
≥ Eβ0

[
bµ∗(j̄)j̄

∣∣Π∗j̄(t)]− p∗µ∗(j̄)j̄,
since firm j̄ always obtains a higher expected payoff via coalitional deviations. Therefore,

condition (5-6) is harder to satisfy than (2-3), which contradicts to the fact that condition

(5-6) holds but (2-3) fails. Hence, we must have Π†
j̄
(t) ∩D†c 6= Π∗j̄ .

Consequently, satisfying (̄i, j̄; p̄) in Case 3 could refine firm j̄’s information, in

terms of partition cell, from Π∗j̄(t) to Π†
j̄
(t)∩D†c. (In other words, satisfying the coalition

turns the hypothetical information of worker ī’s willingness, represented by D†c, into a

new piece of real information for firm j̄.)

Proof of the Proposition. Consider an initial state. Without loss of generality, we

assume that the initial state is individually rational (otherwise, break up all pairs with

an agent who obtains a negative payoff). Furthermore, it is straightforward that any
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learning-blocking path preserves individual rationality, unless there is strict information

updating. Since it is impossible to have strict information updating indefinitely, it is

without loss to assume that individually rational is always satisfied along the constructed

learning-blocking path.

We take an initial set of agents A0 = ∅, where the variable A will be updated

during the construction below. For each state (µ,p,Π), we distinguish two cases: (i)

(µ,p,Π) admits no blocking pair; (ii) (µ,p,Π) admits a blocking pair. First, by Lemma

1, for each state (µ,p,Π) in Case (i), there is a finite learning-blocking path to either

a stable state or a state in Case (ii) with a partition profile that is strictly finer than

Π, where we update A to A′ = ∅ and proceed. Second, for each state (µ,p,Π) in

Case (ii) with a set of agents A which is internally stable under (µ,p,Π), consider two

subcases: Firstly, if some blocking coalition involves an agent in A and an agent outside

A, then by Lemma 2, starting from (µ,p,Π), there exists a finite learning-blocking

path to a state (µ′,p′,Π′) under which either (a) a set A′ ) A is internally stable;

or (b) Π′ is strictly finer than Π, where we set A′ = ∅ and proceed. Secondly, if

every blocking coalition involves only two agents outside A, then we satisfy a blocking

coalition (̄i, j̄; p̄) to obtain (µ,p,Π) ↑(̄i,j̄;p̄). If A′ = A ∪ {̄i, j̄} is internally stable under

(µ,p,Π) ↑(̄i,j̄;p̄), then (a) holds. If A′ = A ∪ {̄i, j̄} contains a blocking pair (i, j), with

wage p, for (µ,p,Π) ↑(̄i,j̄;p̄), then we can use the same argument as in the proof of

Lemma 2 (particularly how Case 3 identifies a strict information updating) to see that

(b) holds for (µ′,p′,Π′) :=
(
(µ,p,Π) ↑(̄i,j̄;p̄)

)
↑(i,j;p), where we set A′ = ∅ and proceed.

To sum up, for each state in Case (ii) with a set A which is internally stable, we

can construct a finite learning-blocking path to a state under which either (a) a set

A′ ) A is internally stable; or (b) the partition profile is strictly finer. Moreover, for

each state in Case (i), we can also construct a finite learning-blocking path to either

(a′) a stable state or (b′) a state in Case (ii) with a strictly finer partition profile. Since

T is finite, the partition profile cannot be refined indefinitely. Hence, along the path

which we construct by applying Lemma 1 and Lemma 2, eventually neither (b) nor

(b′) happens. Therefore, (a) keeps enlarging the internally stable set until (a′) happens.
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That is, there is a finite learning-blocking path which leads to a stable state.
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